Cloudera’s Enterprise Data Hub on the AWS Cloud

Quick Start Reference Deployment

Shivansh Singh and Tony Vattathil
Amazon Web Services

October 2014
Last update: August 2017 (revisions)

This guide is also available in HTML format at
https://docs.aws.amazon.com/quickstart/latest/cloudera/.
About This Guide

This Quick Start reference deployment guide includes architectural considerations and configuration steps for deploying Cloudera’s Enterprise Data Hub (EDH) on the Amazon Web Services (AWS) Cloud. It discusses best practices for deploying Cloudera’s EDH on AWS using services such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Virtual Private Cloud (Amazon VPC). It also provide links to automated AWS CloudFormation templates that you can leverage for your deployment or launch directly into your AWS account. This deployment uses Cloudera Director to deploy EDH automatically into a configuration of your choice. It supports Cloudera Director 2.5.

The guide is for IT infrastructure architects, administrators, and DevOps professionals who are planning to implement or extend their Cloudera EDH workloads on the AWS cloud.

Quick Starts are automated reference deployments for key enterprise workloads on the AWS Cloud. Each Quick Start launches, configures, and runs the AWS compute, network, storage, and other services required to deploy a specific workload on AWS, using AWS best practices for security and availability.

Overview

Cloudera EDH on AWS

Cloudera’s Enterprise Data Hub (EDH) allows you to store your data with the flexibility to run a variety of enterprise workloads—including batch processing, interactive SQL, enterprise search, and advanced analytics—while utilizing robust security, governance, data protection, and management.

AWS provides customers with the ability to set up the infrastructure to support EDH in a flexible, scalable, and cost-effective manner. This reference deployment will assist you in building an EDH cluster on AWS by integrating Cloudera Director with an automated deployment initiated by AWS CloudFormation.

This guide is meant primarily for the deployment of the Cloudera’s EDH cluster on AWS. For additional administration and support topics related to Cloudera’s Enterprise Data Hub, visit Cloudera Support.
Quick Links
The links in this section are for your convenience. Before you launch the Quick Start, please review the architecture, configuration, network security, and other considerations discussed in this guide.

- If you have an AWS account, and you’re already familiar with AWS services and Cloudera, you can launch the Quick Start to deploy Cloudera EDH into a new virtual private cloud (VPC) in your AWS account. The deployment takes approximately 30 minutes. If you’re new to AWS or Cloudera, please review the implementation details and follow the step-by-step instructions provided later in this guide.

 ![Launch (for new VPC)](Launch.png) ![Launch (for existing VPC)](Launch.png)

- If you want to take a look under the covers, you can view the AWS CloudFormation template that automates the deployment. You can customize the template during launch, or download and extend it for other projects.

 ![View template (for new VPC)](View-template.png) ![View template (for existing VPC)](View-template.png)

Cost and Licenses
This deployment uses Cloudera Director to deploy EDH automatically into a configuration of your choice. You are responsible for the cost of the AWS services used while running this Quick Start reference deployment. There is no additional cost for using the Quick Start. This reference deployment allows you to scale your cluster to any number of nodes. The instance type you select to meet your memory and compute requirements, and the number of nodes in your cluster will affect your cost. Prices are subject to change. See the pricing pages for each AWS service you will be using for full details.

This deployment activates a 60-day trial of Cloudera Enterprise. To upgrade your version, see [Managing Licenses](#) on the Cloudera website.
AWS Services

The core AWS components used by this Quick Start include the following AWS services. (If you are new to AWS, see Getting Started with AWS.)

- **Amazon EC2** – The Amazon Elastic Compute Cloud (Amazon EC2) service enables you to launch virtual machine instances with a variety of operating systems. You can choose from existing Amazon Machine Images (AMIs) or import your own virtual machine images.

- **Amazon VPC** – The Amazon Virtual Private Cloud (Amazon VPC) service lets you provision a private, isolated section of the AWS Cloud where you can launch AWS services and other resources in a virtual network that you define. You have complete control over your virtual networking environment, including selection of your own IP address range, creation of subnets, and configuration of route tables and network gateways.

- **NAT gateways** – The Network Address Translation (NAT) Gateway service is a highly available AWS managed service that makes it easy to connect instances in a private VPC subnet to the internet. With NAT gateways, you don’t have to manage NAT instances, and the bandwidth available is no longer limited to the NAT instance size.

- **AWS CloudFormation** – AWS CloudFormation lets you to create and manage a collection of related AWS resources, and provision and update them in an orderly and predictable way. You use a template to describe all the AWS resources (for example, EC2 instances) that you want. You don’t have to individually create and configure the resources or figure out dependencies—AWS CloudFormation handles all of that.

- **IAM** – AWS Identity and Access Management (IAM) enables you to securely control access to AWS services and resources for your users. With IAM, you can centrally manage users, security credentials such as access keys, and permissions that control which AWS resources users can access.

Architecture Overview

AWS CloudFormation provides an easy way to create and manage a collection of related AWS resources, provisioning and updating them in an orderly and predictable fashion.

This Quick Start deploys and configures the following components:

- A VPC configured with four subnets, two public and the two private.

- A NAT gateway configured in the public subnet to allow outbound internet access for the instances deployed in the private subnet. The gateway is configured with an Elastic IP address.
Note If you choose the option to create a new VPC, the Quick Start creates and configures the VPC, the two private and two public subnets, and the NAT gateway for you. If you choose the option to deploy Cloudera EDH into an existing VPC, the Quick Start requires the described configuration.

- A Linux server instance deployed in the public subnet for downloading Cloudera Director and various configuration files and scripts.
- An IAM instance role with fine-grained permissions for access to AWS services necessary for the deployment process.
- Security groups for each instance or function to restrict access to only necessary protocols and ports.
- A placement group to provide a logical grouping of instances and enable applications to participate in a low-latency, 10 Gbps network (optional).
- A fully customizable EDH cluster, including worker nodes, edge nodes, and management nodes that you define based on your compute and storage requirements.

In this reference architecture, we support two options for deploying Cloudera’s Enterprise Data Hub within a VPC. One option is to launch all the nodes within a public subnet that provides direct internet access. The second option is to deploy all the nodes within a private subnet. The reference deployment builds both public and private subnets, and the cluster can be deployed in either subnet using the configuration file.
EDH Cluster in a Public Subnet

This option builds the following environment in the AWS Cloud.

![Public subnet topology](image)

Figure 1: Public subnet topology

A public subnet cluster topology includes an EC2 instance (referred to as the *cluster launcher instance*), which is launched within the public subnet. An Elastic IP address is assigned to the instance, and a security group that allows SSH access to the instance is created. The cluster launcher instance then builds the EDH cluster by launching all the Hadoop-related EC2 instances within the public subnet. In this topology, all the launched instances have direct access to the internet.
EDH Cluster in a Private Subnet

A private subnet cluster topology launches the cluster launcher instance, which is in the public subnet. An Elastic IP address is assigned to the instance, and a security group that allows SSH access to the instance is created. All other Hadoop-related EC2 instances are created within the private subnet. In this topology, the EC2 instances within the EDH cluster do not have direct access to the internet. Instead, they access the internet through the NAT gateway. In this topology, the only publicly accessible component is the cluster launcher in the public subnet.
Deployment Scenarios

This Quick Start provides two deployment options:

- **Deploy Cloudera EDH into a new VPC** (end-to-end deployment). This option builds a new AWS environment consisting of the VPC, subnets, NAT gateways, security groups, and other infrastructure components, and then deploys Cloudera EDH into that new VPC.

- **Deploy Cloudera EDH into an existing VPC**. This option provisions Cloudera in your existing AWS infrastructure.

The Quick Start provides separate templates for these options. It also lets you configure additional settings such as CIDR blocks and instance types, as discussed later in this guide.

Deployment Steps

This Quick Start enables you to set up a fully customizable Hadoop cluster on demand. Building a scalable, on-demand infrastructure on AWS provides a cost-effective solution for handling large-scale compute and storage requirements.

This Quick Start uses Cloudera Director, which helps enable the delivery of an enterprise-class, elastic, self-service experience for the Enterprise Data Hub on a cloud infrastructure. The flexible architecture allows you to choose the most appropriate network, compute, and storage infrastructure for your environment. You can deploy the Quick Start into an existing VPC or create a new VPC for the Cloudera EDH cluster.

What We’ll Cover

The procedure for deploying Cloudera EDH on AWS consists of the following steps. For detailed instructions, follow the links for each step.

- **Step 1. Prepare an AWS account**

 This involves signing up for an AWS account, choosing a region, creating a key pair, and requesting increases for account limits, if necessary.

- **Step 2. Launch the Quick Start**

 In this step, you’ll launch the AWS CloudFormation template into your AWS account, specify parameter values, and create the stack. The Quick Start provides separate templates for end-to-end deployment and deployment into an existing VPC.
Step 3. Configure the cluster and EDH services

This step involves customizing the EDH deployment by choosing private or public subnets, EC2 instance types, the number of nodes in the cluster, and other parameters. Cloudera Director server provides a simple user interface to build complex topologies, and includes features such as dynamic scaling, cloning, and repeated deployments on AWS. Starting with the release of Cloudera Director 1.5.1, you can access the Cloudera Director server UI in a browser, without having to connect to any of the instances by using SSH. You can provision complex deployments that involve multiple instance types, security groups, placement groups, and other features by using this web interface. See the Cloudera Director documentation for additional details.

Note Previous versions of Cloudera Director required modifying the configuration files aws.simple.conf and aws.reference.conf by connecting via SSH to the launcher nodes. This is no longer necessary.

Step 4. Deploy the EDH cluster

In this step, you will configure your cluster and launch the cluster by using the Cloudera Director server web UI. The reference deployment installs both the Cloudera Director client and the Cloudera Director server on the cluster launcher node. Optionally, you may connect to the launcher node by using SSH to modify or deploy the cluster via the Cloudera Director client.

Step 1. Prepare an AWS Account

1. If you don’t already have an AWS account, create one at https://aws.amazon.com by following the on-screen instructions. Part of the sign-up process involves receiving a phone call and entering a PIN using the phone keypad.

2. Use the region selector in the navigation bar to choose the AWS Region where you want to deploy the EDH cluster on AWS.

Amazon EC2 locations are composed of regions and Availability Zones. Regions are dispersed and located in separate geographic areas. We recommend that you check the availability of AWS services before you choose a region. Otherwise, deployment will fail.
Figure 3: Choosing an AWS Region

Tip Consider choosing a region closest to your data center or corporate network to reduce network latency between systems running on AWS and the systems and users on your corporate network.

3. Create a **key pair** in your preferred region. To do this, in the navigation pane of the Amazon EC2 console, choose **Key Pairs**, **Create Key Pair**, type a name, and then choose **Create**.

Figure 4: Creating a key pair
Amazon EC2 uses public-key cryptography to encrypt and decrypt login information. To be able to log into your instances, you must create a key pair. On Linux, we use the key pair to authenticate SSH login.

4. If necessary, request a service limit increase for the Amazon EC2 instance types that you intend to deploy. Depending on the instance type, the default limit for the number of instances that can be run varies from 2 to 20 instances. You may check the default instance limits on the Amazon EC2 FAQ page. If you have existing deployments that leverage the instance type you need, or if you plan on exceeding this default with this reference deployment, you will need to request an Amazon EC2 instance service limit increase. It might take a few days for the new service limit to become effective. For more information, see Amazon EC2 Service Limits in the AWS documentation.

Figure 5: Requesting a Service Limit Increase
Step 2. Launch the Quick Start

In this step, you will launch an AWS CloudFormation template that automates the following:

- Configures the VPC that provides the base AWS network infrastructure for your EDH deployment.
- Creates the network resources needed for EDH deployment, including public and private subnets within the VPC, a NAT gateway launched within the public subnet, security groups, and an IAM role.
- Starts an EC2 instance running Linux (Red Hat) in the public subnet. This instance serves as a launcher node for the Cloudera cluster, and initiates cluster deployment.
- Downloads Cloudera Director along with the necessary scripts and configuration files. Cloudera Director is used to configure the EDH cluster.

All the steps are fully automated by AWS CloudFormation. The template that deploys Cloudera EDH into an existing VPC skips the VPC and network configuration steps.

Note Starting with version 1.5.1, Cloudera Director supports key pairs that are generated on the fly. The previous deployment model involved passing the key pair used during launch to the cluster launcher node. In the current deployment model, a key pair is generated dynamically on the cluster launcher node via AWS Command Line Interface (AWS CLI) and is used to launch the EDH cluster.

1. Choose one of the following options to launch the AWS CloudFormation template into your AWS account. For help choosing an option, see Deployment Scenarios earlier in this guide.

 | Option 1 | Option 2 |
 |---|
 | Deploy Cloudera EDH into a new VPC on AWS | Deploy Cloudera EDH into an existing VPC on AWS |
 | !Launch | !Launch |

The template is launched in the US West (Oregon) region by default. You can change the region by using the region selector in the navigation bar.

This stack takes approximately 30 minutes to create.
You are responsible for the cost of the AWS services used while running this Quick Start reference deployment. There is no additional cost for using this Quick Start. Prices are subject to change. See the pricing pages for each AWS service you will be using in this Quick Start for full details.

2. On the **Select Template** page, keep the default URL for the AWS CloudFormation template source, and then choose **Next**.

3. On the **Specify Details** page, review the parameters for the template. Provide values for the parameters that require your input. You can also customize the remaining parameter values. The AWS CloudFormation template uses these to generate a cluster configuration file. When you’re done, choose **Next**.

In the following tables, parameters are listed by category and described separately for the two deployment options:

- Parameters for deploying Cloudera EDH into a new VPC
- Parameters for deploying Cloudera EDH into an existing VPC

Option 1: Parameters for deploying Cloudera EDH into a new VPC

View the template for new VPC

Network Configuration:

<table>
<thead>
<tr>
<th>Parameter label (name)</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability Zones</td>
<td>Requires input</td>
<td>Availability Zones for the subnets where the cluster launcher node will be deployed. The Quick Start uses two Availability Zones and preserves the logical order you specify.</td>
</tr>
<tr>
<td>VPC CIDR (VPCCIDR)</td>
<td>10.0.0.0/16</td>
<td>CIDR block for the VPC to create.</td>
</tr>
<tr>
<td>Private Subnet 1 CIDR</td>
<td>10.0.0.0/19</td>
<td>CIDR block for private subnet 1 located in Availability Zone 1.</td>
</tr>
<tr>
<td>Private Subnet 2 CIDR</td>
<td>10.0.32.0/19</td>
<td>CIDR block for private subnet 2 located in Availability Zone 2.</td>
</tr>
<tr>
<td>Public Subnet 1 CIDR</td>
<td>10.0.128.0/20</td>
<td>CIDR block for public subnet 1 located in Availability Zone 1.</td>
</tr>
<tr>
<td>Public Subnet 2 CIDR</td>
<td>10.0.144.0/20</td>
<td>CIDR block for public subnet 2 located in Availability Zone 2.</td>
</tr>
<tr>
<td>Permitted IP range (RemoteAccessCIDR)</td>
<td>Requires input</td>
<td>CIDR block for SSH access into the EDH launcher instance. We recommend that you set this value to a trusted CIDR block.</td>
</tr>
</tbody>
</table>
Cloudera Launcher Configuration:

<table>
<thead>
<tr>
<th>Parameter label (name)</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Name (KeyName)</td>
<td>Requires input</td>
<td>An existing public/private key pair, which allows you to connect securely to your instance after it launches. This is the key pair you created in step 1, when you prepared your AWS account.</td>
</tr>
<tr>
<td>Cluster Launcher Instance Type (ClusterLauncherType)</td>
<td>m4.large</td>
<td>EC2 instance type for the EDH launcher instance.</td>
</tr>
</tbody>
</table>

AWS Quick Start Configuration:

<table>
<thead>
<tr>
<th>Parameter label (name)</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS Quick Start S3 Bucket Name (QSS3BucketName)</td>
<td>aws-quickstart</td>
<td>The S3 bucket you have created for your copy of Quick Start assets, if you decide to customize or extend the Quick Start for your own use. The bucket name can include numbers, lowercase letters, uppercase letters, and hyphens, but should not start or end with a hyphen.</td>
</tr>
<tr>
<td>AWS Quick Start S3 Key Prefix (QSS3KeyPrefix)</td>
<td>quickstart-cloudera/</td>
<td>The S3 key name prefix used to simulate a folder for your copy of Quick Start assets, if you decide to customize or extend the Quick Start for your own use. This prefix can include numbers, lowercase letters, uppercase letters, hyphens, and forward slashes.</td>
</tr>
</tbody>
</table>

- **Option 2: Parameters for deploying Cloudera EDH into an existing VPC**

 View the template for existing VPC

Network Configuration:

<table>
<thead>
<tr>
<th>Parameter label (name)</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPC Id (VPC)</td>
<td>Requires input</td>
<td>ID of the existing VPC where you want to deploy the Cloudera nodes.</td>
</tr>
<tr>
<td>Private Subnet Id (PrivateSubnet)</td>
<td>Requires input</td>
<td>ID of an existing private subnet where Cloudera nodes will be deployed in your VPC.</td>
</tr>
<tr>
<td>Public Subnet Id (PublicSubnet)</td>
<td>Requires input</td>
<td>ID of an existing public subnet where the cluster launcher will be deployed in your VPC.</td>
</tr>
<tr>
<td>Public Subnet CIDR (PublicSubnet1CIDR)</td>
<td>Requires input</td>
<td>CIDR block of the existing public subnet where the cluster launcher will be deployed in your VPC.</td>
</tr>
<tr>
<td>Private Subnet CIDR (PrivSubCIDR)</td>
<td>Requires input</td>
<td>CIDR block of the existing private subnet where Cloudera nodes will be deployed in your VPC.</td>
</tr>
</tbody>
</table>
Parameter label (name) | Default | Description
---|---|---
Permitted IP range (RemoteAccessCIDR) | Requires input | CIDR block for SSH access into the EDH launcher instance. We recommend that you set this value to a trusted CIDR block.

Cloudera Launcher Setup:

<table>
<thead>
<tr>
<th>Parameter label (name)</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Name (KeyName)</td>
<td>Requires input</td>
<td>An existing public/private key pair, which allows you to connect securely to your instance after it launches. This is the key pair you created in step 1, when you prepared your AWS account.</td>
</tr>
<tr>
<td>Cluster Launcher Instance Type (ClusterLauncherType)</td>
<td>m4.large</td>
<td>EC2 instance type for the EDH launcher instance.</td>
</tr>
</tbody>
</table>

AWS Quick Start Configuration:

<table>
<thead>
<tr>
<th>Parameter label (name)</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS Quick Start S3 Bucket Name (QSS3BucketName)</td>
<td>aws-quickstart</td>
<td>The S3 bucket you have created for your copy of Quick Start assets, if you decide to customize or extend the Quick Start for your own use. The bucket name can include numbers, lowercase letters, uppercase letters, and hyphens, but should not start or end with a hyphen.</td>
</tr>
<tr>
<td>AWS Quick Start S3 Key Prefix (QSS3KeyPrefix)</td>
<td>quickstart-cloudera/</td>
<td>The S3 key name prefix used to simulate a folder for your copy of Quick Start assets, if you decide to customize or extend the Quick Start for your own use. This prefix can include numbers, lowercase letters, uppercase letters, hyphens, and forward slashes.</td>
</tr>
</tbody>
</table>

After the cluster launcher instance is deployed, you can make additional changes to the EDH deployment by using the Cloudera Director server web UI or by modifying the configuration file manually.

4. On the **Options** page, you can specify tags (key-value pairs) for resources in your stack and set additional options. When you’re done, choose **Next**.

5. On the **Review** page, review and confirm the settings. Under **Capabilities**, select the check box to acknowledge that the template will create IAM resources.

6. Choose **Create** to deploy the stack.

7. Monitor the status of the stack. When the status field displays CREATE_COMPLETE and the launcher instance has been created successfully, as shown in Figure 6, you can continue to the next step to configure the cluster.
Step 3. Configure the Cluster and EDH Services

In this step, you will use SSH tunneling to connect to Cloudera Director, which is running on the cluster launcher instance you created in step 2, and configure EDH services.

1. Find the SSH command to connect to the cluster launcher instance.

 To do this, on the EC2 dashboard, click the Connect tab under EC Instances, as shown in Figure 7. You will need your private key to launch the instance.

2. Set up an SSH tunnel to connect to Cloudera Director.

 When you launch the cluster launcher instance, it will automatically download Cloudera Director and build a configuration file based on the resources created by the AWS.
CloudFormation template, such as VPC, private subnet, and public subnet. You can then modify the configuration file to launch the most appropriate cluster for your scenario. The launcher instance is automatically assigned an IAM root role to grant access to all the AWS resources that may be needed by the default configuration created in step 1.

In addition, the template creates a 2048-bit RSA key pair with the naming pattern cloudera-aws-quickstart-mm-dd-YYYY on the cluster launcher node. This key pair will be used during the launch of EDH nodes. See the AWS CLI documentation for more information.

Because the launcher instance is started with an IAM role, there is no need to distribute AWS credentials to deploy the EDH cluster. Because role credentials are temporary and rotated automatically, you don't have to manage credentials. For example, you don't have to worry about rotating credentials. For more information about the benefits of the IAM role, see Using IAM Roles to Delegate Permissions to Applications that Run on Amazon EC2 in the AWS documentation.

Figure 8 lists the files that are downloaded automatically during launch.

Use the following command to set up an SSH tunnel into Cloudera Director running on port 7189. This command allows you to access Cloudera Director via a browser running on your local system.

```
ssh -i "mykeyfile.pem" -L 7189:localhost:7189 ec2-user@xx.x.xxx.xxx
```

If you want to use the Cloudera Director client and deploy manually, use the following SSH command and bootstrap the cluster via the command line interface:
Important Note that the auto-generated key pair file is necessary to connect to the new nodes being launched by using SSH. However, the cluster launcher node needs the key pair that was used during the initial AWS CloudFormation template launch. The SSH command above refers to the key pair used during the AWS CloudFormation launch, and not to the auto-generated key pair file.

3. Modify the configuration of the cluster.

The Quick Start builds two baseline configuration files that are customizable during deployment (either manually or through the Cloudera Director server web UI):

- `aws.simple.conf` for configuring simple clusters
- `aws.reference.conf` for configuring complex clusters

You can make additional changes to the deployment configuration (for example, you can choose instance types, node count, subnet type, EDH services, or installation versions) by further modifying the configuration file or by using the web UI. The configuration files include baseline values based on the various resources (such as VPC ID and subnet ID) created during the launch of the Cloudera stack. By default, all Cloudera nodes are launched in the private subnet for security reasons. For more information about configuration parameters, see the Cloudera Director User Guide.

Step 4. Deploy the EDH Cluster

Cloudera Director supports two options for cluster deployment:

- **Option 1 (recommended):** You can deploy using the Cloudera Director server to manage multiple clusters. Cloudera Director provides a simple interface to deploy, scale, and terminate clusters, and helps you manage the cluster.

- **Option 2:** You can deploy using the CLI and manage the nodes manually.

Option 1: Deploy Using Cloudera Director Server (Recommended)

The Cloudera Director server deployment provides a web UI to deploy clusters of any topology—simple or complex. By default, this Quick Start automatically installs and starts the Cloudera Director server on port 7189 of the cluster launcher instance, during instance bootstrapping. Once the SSH tunnel is complete from step 3, you can use the browser on your local system and connect to localhost:7189.
After you accept the end user license, log in to Cloudera Director by using the default user name “admin” and password “admin”. The Cloudera Director dashboard is displayed.

![Cloudera Director dashboard](image)

Figure 9: Cloudera Director dashboard

The Quick Start has already loaded the reference environment into the Cloudera Director server to help you get started. Choose **Add Cloudera Manager** and select the reference environment from the menu to see the deployment configuration showing up in the web UI, as shown in Figure 10.
Make the following selections to determine how Cloudera Manager will be set up:

- Provide a name for the Cloudera Manager deployment.
- Select an instance template based on the instance type desired for the instance that will host the Cloudera Manager installation.
- Select a license type. If you have a Cloudera Enterprise license, you can enter it now, either directly or by file upload. If you do not have a license, select either the Enterprise Trial or Express option.
- Choose whether you wish Cloudera Manager to use its embedded database server or an external one, which may either already exist or may be created by Cloudera Director in Amazon RDS.
After you make any necessary modifications to the deployment configuration, choose **Continue**. Cloudera Director begins launching and configuring a Cloudera Manager instance while presenting the configuration for the EDH cluster.

![Add Cluster](image)

Figure 11: Adding Cloudera cluster nodes

Make the following selections to determine how the EDH cluster will be set up:

- Provide a name for the cluster.
- Choose the version of CDH, Cloudera’s Enterprise Data Hub distribution, to install. The default is to use the latest available version of CDH released along with Cloudera Director.
- Select the variety of services to install in the EDH, from a minimal core set to all available services.
Select the number and instance template for the instance groups that Cloudera Director will allocate in Amazon EC2. Each instance in an instance group has the same variety of roles (service components). A minimal cluster should use the given groups with their default roles. Be sure to select the number of workers desired; in all cases, stay above the default minimum count for each instance group.

After you make any necessary modifications to the cluster configuration, choose **Continue**. Cloudera Director will display progress bars tracking the progress of Cloudera Manager and EDH cluster creation. When progress is complete, your EDH cluster is ready for use.

Option 2: Deploy Using the CLI, No Server

To deploy the EDH cluster, run the `cloudera-director` executable using one of the configuration files, as follows.

For a simple cluster:

```
cloudera-director bootstrap aws.simple.conf
```

For an advanced cluster:

```
cloudera-director bootstrap aws.reference.conf
```

Figure 12 shows a typical sequence of a completed EDH deployment using Cloudera Director.
Cloudera Director also supports other command arguments, such as `terminate` and `status`.

For example, for a simple cluster:

```
cloudera-director status aws.simple.conf
```
For an advanced cluster:

```bash
cloudera-director status aws.reference.conf
```

![Figure 13: EDH deployment sequence with status query](image)

Accessing the Cluster with Cloudera Manager

Once the EDH cluster has been launched, you can connect to Cloudera Manager to access the cluster and add any services or maintenance operations. You can connect to Cloudera Manager from a local host by forwarding the local port to the remote IP/port where Cloudera Manager is running. You can find the private IP address of the instance running Cloudera Manager by viewing information about it in Cloudera Director. Figure 14 shows an example.
Figure 14: Finding the private IP address of the instance

In Figure 14, Cloudera Manager is running on the instance with private IP 10.0.23.184 on port 7180. We can forward localhost:7180 to Cloudera Manager using the public IP of the cluster launcher instance with the following command:

```
ssh -i mykeyfile.pem -L 7180:10.0.23.184:7180 \ ec2-user@cluster-launcher-public-ip
```

When port forwarding is complete, open the browser on the local host, go to http://localhost:7180 and log in with admin/admin, as shown in Figure 15.
Managing the Cluster with Cloudera Director

For ongoing management of the cluster or to launch additional clusters, you can use Cloudera Director’s web interface.

From Cloudera Director’s web interface, you can clone the cluster you just created, dynamically scale the cluster, or launch new clusters. You can also view all your clusters from a central dashboard.
Storage Configuration

This deployment uses disk storage attached to EC2 instances as the primary storage for HDFS data.

Some EC2 instance types use only instance stores, which are attached to an instance and provide temporary block-level storage. The size of an instance store ranges from 4 GiB to up to 48 TiB, and varies by instance type according to the following table.

<table>
<thead>
<tr>
<th>Instance type</th>
<th>Instance store volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>c3.4xlarge</td>
<td>2 x 160 GiB SSD (320 GiB)</td>
</tr>
<tr>
<td>c3.8xlarge</td>
<td>2 x 320 GiB SSD (640 GiB)</td>
</tr>
<tr>
<td>d2.xlarge</td>
<td>2 x 2,000 GiB HDD (6 TiB)</td>
</tr>
<tr>
<td>d2.2xlarge</td>
<td>6 x 2,000 GiB HDD (12 TiB)</td>
</tr>
</tbody>
</table>
Instance store volumes are usable only from a single instance during its lifetime; they can’t be detached and then attached to another instance. However, they persist during restarts. Since these are local stores, they carry performance benefits during I/O operations, because data doesn’t have to be shipped over the network. For more information about instance stores, see the Amazon EC2 documentation.

Other EC2 instance types use EBS volumes, which can be attached and detached from an instance as persistent block-level storage. These are non-local storage devices that may not perform as well as instance stores, but provide additional assurance against data loss, beyond HDFS replication.

Cloudera Director supports using either all instance stores or all EBS volumes for any instance. You can configure an instance template in Cloudera Director to attach additional EBS volumes if you need more space than the default provided by the AMI. See the Cloudera documentation for more information on how to use EBS volumes with Cloudera Manager and Cloudera’s Enterprise Data Hub.

Cloudera Manager automatically configures HDFS with datanode directories that are most appropriate for holding HDFS data. See the Cloudera documentation for details on how this automatic configuration process works. In most cases, you do not have to explicitly configure which directories to use.

Backup

For backup purposes, we recommend using Amazon S3 to keep a copy of HDFS data from instance stores. Amazon S3 stores data objects redundantly on multiple devices across multiple facilities and allows concurrent read or write access to these data objects by many separate clients or application threads. You can use the redundant data stored in Amazon S3 to recover quickly and reliably from instance or application failures.
Operating System and AMI

Cloudera Director supports Red Hat and CentOS versions 6.x and 7.x. A default 64-bit Red Hat 7.x AMI is chosen in the configuration file to be installed on the instance. If you need to install other versions, please refer to the Cloudera Director documentation on OS support and customize the AMI. For a list of different AMIs across regions, visit Red Hat and Amazon Web Services.

Security

The AWS Cloud provides a scalable, highly reliable platform that helps enable customers to deploy applications and data quickly and securely.

When you build systems on the AWS infrastructure, security responsibilities are shared between you and AWS. This shared model can reduce your operational burden as AWS operates, manages, and controls the components from the host operating system and virtualization layer down to the physical security of the facilities in which the services operate. In turn, you assume responsibility and management of the guest operating system (including updates and security patches), other associated applications, as well as the configuration of the AWS-provided security group firewall. For more information about security on AWS, visit the AWS Security Center.

AWS Identity and Access Management (IAM)

This deployment leverages an IAM role with least privileged access. It is not necessary or recommended to store SSH keys or secret keys or access keys on the provisioned instances.

OS Security

The root user on cluster nodes can be accessed only by using the SSH key specified during the deployment process. AWS doesn’t store these SSH keys, so if you lose your SSH key you can lose access to these instances.

Operating system patches are your responsibility and should be performed on a periodic basis.

Security Groups

A security group acts as a firewall that controls the traffic for one or more instances. When you launch an instance, you associate one or more security groups with the instance. You add rules to each security group that allow traffic to or from its associated instances. You
can modify the rules for a security group at any time. The new rules are automatically applied to all instances that are associated with the security group.

The security groups created and assigned to the individual instances as part of this solution are restricted as much as possible while allowing access to the various functions needed by Hadoop. We recommend reviewing security groups to further restrict access as needed once the EDH cluster is up and running.

Additional Resources

AWS services

- Getting Started
- AWS CloudFormation
 https://aws.amazon.com/documentation/cloudformation/
- Amazon EC2
 - User’s guide:
 https://docs.aws.amazon.com/ec2/
 - Regions and Availability Zones:
 - Key pairs:
 - Instance stores:
 - FAQ:
 https://aws.amazon.com/ec2/faqs
- Amazon Identity and Access Management
 - User’s guide:
 https://aws.amazon.com/documentation/iam/
 - Benefits of the IAM role:
• Amazon VPC
 – Documentation: https://aws.amazon.com/documentation/vpc/

• AWS Security Center
 https://aws.amazon.com/security/

• Red Hat and AWS
 https://aws.amazon.com/partners/redhat/

Cloudera

• Cloudera website
 https://www.cloudera.com

• Cloudera documentation
 https://www.cloudera.com/documentation.html

• Cloudera Director
 Online HTML: https://www.cloudera.com/documentation/director/latest.html

• Cloudera Support
 https://www.cloudera.com/more/services-and-support.html

• Managing licenses
 https://www.cloudera.com/documentation/enterprise/latest/topics/cm_ag_licenses.html

Quick Start reference deployments

• AWS Quick Start home page
 https://aws.amazon.com/quickstart/
Appendix: Security Group Specifics

The following are the configured inbound and outbound protocols and ports allowed for the various instances deployed as part of this solution:

Cluster Launcher Instance Security Group

<table>
<thead>
<tr>
<th>Source</th>
<th>Protocol</th>
<th>Port Range (Service)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restricted to CIDR block specified during the deployment process</td>
<td>TCP</td>
<td>22 (SSH)</td>
<td>Allow inbound SSH access to Linux instance from your network (over the internet gateway)</td>
</tr>
<tr>
<td>Custom TCP rule</td>
<td>TCP</td>
<td>1-65535</td>
<td>10.0.1.0/24 (private subnet within the VPC)</td>
</tr>
<tr>
<td>Custom TCP rule</td>
<td>TCP</td>
<td>1-65535</td>
<td>10.0.2.0/24 (public subnet within the VPC)</td>
</tr>
</tbody>
</table>

EDH Cluster Nodes

<table>
<thead>
<tr>
<th>Source</th>
<th>Protocol</th>
<th>Port Range (Service)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restricted to CIDR block specified during the deployment process</td>
<td>TCP</td>
<td>22 (SSH)</td>
<td>Allow inbound SSH access to Linux instance from your network (over the internet gateway)</td>
</tr>
<tr>
<td>Custom TCP rule</td>
<td>TCP</td>
<td>1-65535</td>
<td>10.0.1.0/24 (private subnet within the VPC)</td>
</tr>
<tr>
<td>Custom TCP rule</td>
<td>TCP</td>
<td>1-65535</td>
<td>10.0.2.0/24 (public subnet within the VPC)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Destination</th>
<th>Protocol</th>
<th>Port Range</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>o.o.o.o/o</td>
<td>TCP</td>
<td>1-65535</td>
<td>Allow outbound access from cluster launcher instance to anywhere</td>
</tr>
</tbody>
</table>
GitHub Repository

You can visit our GitHub repository to download the templates and scripts for this Quick Start, to post your feedback, and to share your customizations with others.

Document Revisions

<table>
<thead>
<tr>
<th>Date</th>
<th>Change</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 2017</td>
<td>Updated for Cloudera Director 2.5</td>
<td>Template changes</td>
</tr>
<tr>
<td>April 2017</td>
<td>Updated for Cloudera Director 2.3 and NAT Gateway; updated for Cloudera Director 2.4</td>
<td>Documentation and template changes</td>
</tr>
<tr>
<td>July 2016</td>
<td>Updated for Cloudera Director 2.1</td>
<td>Template changes</td>
</tr>
<tr>
<td>January 2016</td>
<td>Updated for Cloudera Director 2.0.0</td>
<td>Template changes</td>
</tr>
<tr>
<td>November 2015</td>
<td>Updated for Cloudera Director 1.5.1</td>
<td>Template changes</td>
</tr>
<tr>
<td>May 2015</td>
<td>Added option to deploy Quick Start into an existing VPC.</td>
<td>Step 2</td>
</tr>
<tr>
<td>March 2015</td>
<td>Updated examples to reflect changes in Cloudera Director 1.1.</td>
<td>Figures 8-11</td>
</tr>
<tr>
<td>October 2014</td>
<td>Initial publication</td>
<td>—</td>
</tr>
</tbody>
</table>
© 2017, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices

This document is provided for informational purposes only. It represents AWS’s current product offerings and practices as of the date of issue of this document, which are subject to change without notice. Customers are responsible for making their own independent assessment of the information in this document and any use of AWS’s products or services, each of which is provided “as is” without warranty of any kind, whether express or implied. This document does not create any warranties, representations, contractual commitments, conditions or assurances from AWS, its affiliates, suppliers or licensors. The responsibilities and liabilities of AWS to its customers are controlled by AWS agreements, and this document is not part of, nor does it modify, any agreement between AWS and its customers.

The software included with this paper is licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with the License. A copy of the License is located at http://aws.amazon.com/apache2.0/ or in the "license" file accompanying this file. This code is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.