Standardized Architecture for NIST High-Impact Controls on the AWS Cloud Featuring Trend Micro Deep Security

Quick Start Reference Deployment

AWS Professional Services
AWS Envision Engineering
Trend Micro AWS Cloud Architecture Team
AWS Quick Start Reference Team

June 2016
(last update: May 2018)

This guide is also available in HTML format at https://docs.aws.amazon.com/quickstart/latest/compliance-nist-high-impact/.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td>2</td>
</tr>
<tr>
<td>About This Guide</td>
<td>3</td>
</tr>
<tr>
<td>Quick Links</td>
<td>4</td>
</tr>
<tr>
<td>About Quick Starts</td>
<td>6</td>
</tr>
<tr>
<td>Overview</td>
<td>6</td>
</tr>
<tr>
<td>Compliance Architectures</td>
<td>6</td>
</tr>
<tr>
<td>NIST-based Assurance Frameworks</td>
<td>6</td>
</tr>
<tr>
<td>Architecture for NIST High-Impact Compliance on AWS</td>
<td>8</td>
</tr>
<tr>
<td>AWS Services</td>
<td>10</td>
</tr>
<tr>
<td>Trend Micro Deep Security</td>
<td>11</td>
</tr>
<tr>
<td>Best Practices</td>
<td>12</td>
</tr>
<tr>
<td>How You Can Use This Quick Start</td>
<td>13</td>
</tr>
<tr>
<td>Cost and Licenses</td>
<td>13</td>
</tr>
<tr>
<td>AWS CloudFormation Templates</td>
<td>13</td>
</tr>
<tr>
<td>AWS CloudFormation Stacks</td>
<td>14</td>
</tr>
<tr>
<td>Templates Used in this Quick Start</td>
<td>14</td>
</tr>
<tr>
<td>Managing the Quick Start Source Files</td>
<td>16</td>
</tr>
<tr>
<td>Uploading the Templates to Amazon S3</td>
<td>16</td>
</tr>
<tr>
<td>Using the Console</td>
<td>16</td>
</tr>
<tr>
<td>Using the AWS CLI</td>
<td>17</td>
</tr>
<tr>
<td>Updating the Amazon S3 URLs</td>
<td>17</td>
</tr>
<tr>
<td>Planning the Deployment</td>
<td>17</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>17</td>
</tr>
<tr>
<td>Specialized Knowledge</td>
<td>17</td>
</tr>
<tr>
<td>Familiarity with AWS Services</td>
<td>17</td>
</tr>
<tr>
<td>Familiarity with Trend Micro Deep Security</td>
<td>18</td>
</tr>
</tbody>
</table>
This Quick Start reference deployment guide discusses architectural considerations and steps for deploying security-focused baseline environments on the Amazon Web Services (AWS) Cloud. Specifically, this Quick Start deploys a standardized environment that helps organizations meet the National Institute of Standards and Technology (NIST) SP 800-53.
high-impact security control baseline, as well as supporting various assessment and authorization frameworks that include the requirements from the high-impact baseline:

- NIST SP 800-53 (Revision 4) high-impact security control baseline. This baseline is for workloads that are categorized as high-impact systems, per NIST FIPS Publication 199.
- The Committee on National Security Systems (CNSS) Instruction 1253
- Federal Risk and Authorization Management Program (FedRAMP)
- The DoD Cloud Computing Security Requirements Guide (SRG)
- NIST SP 800-171
- The OMB Trusted Internet Connection (TIC) Initiative – FedRAMP Overlay (pilot)

The Quick Start includes Deep Security, which is a host-based security product from Trend Micro. This Quick Start deployment guide was created by AWS in partnership with Trend Micro.

The deployment guide includes links for viewing and launching AWS CloudFormation templates developed by AWS and Trend Micro that automate the deployment.

This Quick Start is part of a set of AWS compliance offerings, which provide security-focused, standardized architecture solutions to help Managed Service Providers (MSPs), cloud provisioning teams, developers, integrators, and information security teams adhere to strict security, compliance, and risk management controls. For additional Quick Starts in this category, see the Quick Start catalog.

Quick Links

If you have an AWS account that already meets the technical requirements for the NIST deployment, you can launch the Quick Start to build the architecture shown in Figure 2. The template is launched in the US East (N. Virginia) Region by default. If you have an AWS GovCloud (US) account, you can launch the template in the AWS GovCloud (US) Region.

The deployment takes approximately one hour. If you’re new to AWS or to NIST-compliant architectures on AWS, please read the overview and follow the detailed pre-deployment and deployment steps described in this guide.
If you want to take a look under the covers, you can view the main template used in this deployment. The main template includes references to child templates and provides default settings that you can customize by following the instructions in this guide. For descriptions of the templates and guidance for using the nested templates separately, see the Templates Used in this Quick Start section of this guide.

You can also view the security controls matrix (Microsoft Excel spreadsheet), which maps the architecture decisions, components, and configuration in this Quick Start to security requirements within NIST, TIC, and DoD Cloud SRG publications. The excerpt in Figure 1 provides a sample of the available information.

Table: NIST SP 800-53 Risk Controls

<table>
<thead>
<tr>
<th>Control (Sub-controls)</th>
<th>Title</th>
<th>Description</th>
<th>Control (Sub-controls)</th>
<th>Description</th>
<th>Control (Sub-controls)</th>
<th>Description</th>
<th>Control (Sub-controls)</th>
<th>Description</th>
<th>Control (Sub-controls)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.9.10</td>
<td>兒童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td>4.1.9.10</td>
<td>兒童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td>4.1.9.10</td>
<td>兒童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.9.11</td>
<td>儿童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td>4.1.9.11</td>
<td>儿童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td>4.1.9.11</td>
<td>儿童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.9.12</td>
<td>儿童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td>4.1.9.12</td>
<td>儿童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td>4.1.9.12</td>
<td>儿童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.9.13</td>
<td>儿童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td>4.1.9.13</td>
<td>儿童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td>4.1.9.13</td>
<td>儿童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.9.14</td>
<td>儿童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td>4.1.9.14</td>
<td>儿童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td>4.1.9.14</td>
<td>儿童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.9.15</td>
<td>儿童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td>4.1.9.15</td>
<td>儿童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td>4.1.9.15</td>
<td>儿童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.9.16</td>
<td>儿童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td>4.1.9.16</td>
<td>儿童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td>4.1.9.16</td>
<td>儿童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.9.17</td>
<td>儿童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td>4.1.9.17</td>
<td>儿童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td>4.1.9.17</td>
<td>儿童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.9.18</td>
<td>儿童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td>4.1.9.18</td>
<td>儿童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td>4.1.9.18</td>
<td>儿童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.9.19</td>
<td>儿童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td>4.1.9.19</td>
<td>儿童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td>4.1.9.19</td>
<td>儿童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.9.20</td>
<td>儿童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td>4.1.9.20</td>
<td>儿童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td>4.1.9.20</td>
<td>儿童红军</td>
<td>The information system implements the following security control (or category) that addresses the child template:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We’d like your feedback After you deploy this Quick Start, please take a few minutes to fill out our survey. Your response is anonymous and will help us improve this and other compliance-related reference deployments.
About Quick Starts

Quick Starts are automated reference deployments for key workloads on the AWS Cloud. Each Quick Start launches, configures, and runs the AWS compute, network, storage, and other services required to deploy a specific workload on AWS, using AWS best practices for security and availability.

Overview

Compliance Architectures

AWS compliance solutions help streamline, automate, and implement secure baselines in AWS—from initial design to operational security readiness. They incorporate the expertise of AWS solutions architects, security and compliance personnel to help you build a secure and reliable architecture easily through automation.

This Quick Start includes AWS CloudFormation templates, which can be integrated with AWS Service Catalog, to automate building a standardized baseline architecture that aligns with the requirements within NIST SP 800-53, NIST SP 800-171, the FedRAMP TIC Overlay pilot, and the DoD Cloud SRG. It also includes a security controls matrix, which maps the security controls and requirements to architecture decisions, features, and configuration of the baseline to enhance your organization’s ability to understand and assess the system security configuration.

NIST-based Assurance Frameworks

NIST FIPS PUB 199 establishes security categories for various federal government information and information systems, and provides guidance for determining the security category for a given information set or system. A system can be categorized as high impact if “the loss of confidentiality, integrity, or availability could be expected to have a severe or catastrophic adverse effect on organizational operations, organizational assets, or individuals.”

This Quick Start supports the following requirements:

- NIST SP 800-53 (Revision 4) high-impact security control baseline
- CNSS Instruction 1253
- FedRAMP
- The DoD Cloud Computing SRG
- NIST SP 800-171
- The OMB TIC Initiative – FedRAMP Overlay (pilot)
NIST SP 800-53 security controls are generally applicable to Federal Information Systems, “...operated by an executive agency, by a contractor of an executive agency, or by another organization on behalf of an executive agency.” These are typically systems that must go through a formal assessment and authorization process to ensure sufficient protection of confidentiality, integrity, and availability of information and information systems, based on the security category and impact level of the system (low, moderate, or high), and a risk determination. Security controls are selected from the NIST SP 800-53 Security Control Catalog, and the system is assessed against those security control requirements.

NIST SP 800-171 is generally applicable to Nonfederal Information Systems that store or process federal Controlled Unclassified Information (CUI), but must appropriately protect the confidentiality of the CUI data in accordance with CUI Federal Acquisition Regulation (FAR). These are typically businesses, educational institutions, and research organizations that legitimately store and process federal CUI on their own systems. NIST SP 800-171 chapter 3 contains a set of security requirements that align with the moderate confidentiality requirements within the NIST SP 800-53 security controls.

The OMB Trusted Internet Connection (TIC) Initiative is designed to reduce the number of United States Government (USG) network boundary connections, including internet points of presence (POPs), to optimize federal network services, and improve cyber protection, detection, and response capabilities. In its current form, a TIC-compliant architecture precludes direct access to applications running in the cloud. However, the TIC program recently proposed a draft Federal Risk and Authorization Management Program (FedRAMP)–TIC Overlay that provides a mapping of NIST SP 800-53 security controls to the required TIC capabilities. In May 2015, GSA and DHS invited AWS to participate in a FedRAMP–TIC Overlay pilot. The purpose of the pilot was to determine whether the proposed TIC overlay on the FedRAMP moderate security control baseline was achievable. In collaboration with GSA and DHS, AWS assessed how remote agency users could use the TIC overlay to access cloud-based resources, and whether existing AWS capabilities would allow an agency to enforce TIC capabilities.

The DoD Cloud Computing Security Requirements Guide (SRG) provides security requirements and guidance for the use of commercial cloud services by DoD mission owners. It provides security controls implementation guidance for cloud service providers (CSPs) that wish to have their cloud service offerings (CSOs) accredited for use by DoD components and mission owners. In August 2014, AWS became one of the first CSPs to be granted a Provisional Authorization to Operate (P-ATO) to store and process DoD Impact Level 4 data. DoD mission owners that operate their workloads on AWS can use our P-ATO
as part of the supporting documentation that their authorizing official (AO) uses to grant the workload a system Authorization to Operate (ATO).

Architecture for NIST High-Impact Compliance on AWS

Deploying this Quick Start builds a multi-tier, Linux-based web application in the AWS Cloud with comprehensive protection using Trend Micro’s Deep Security. Figures 2 and 3 illustrate the architecture.

Note You can also download these diagrams in Microsoft PowerPoint format, and edit the icons to reflect your specific workload.

Figure 2: Standard three-tier web architecture depicting integration with multiple VPCs (notional development VPC shown)
The sample architecture includes the following components and features:

- Basic AWS Identity and Access Management (IAM) configuration with custom IAM policies, with associated groups, roles, and instance profiles
- Standard, external-facing Amazon Virtual Private Cloud (Amazon VPC) Multi-AZ architecture with separate subnets for different application tiers and private (back-end) subnets for application and database
- Amazon Simple Storage Service (Amazon S3) buckets for encrypted web content, logging, and backup data
- Standard Amazon VPC security groups for Amazon Elastic Compute Cloud (Amazon EC2) instances and load balancers used in the sample application stack
- Three-tier Linux web application using Auto Scaling and Elastic Load Balancing, which can be modified and/or bootstrapped with customer application
- A secured bastion login host to facilitate command-line Secure Shell (SSH) access to Amazon EC2 instances for troubleshooting and systems administration activities
- Encrypted, Multi-AZ Amazon Relational Database Service (Amazon RDS) MySQL database
- Logging, monitoring, and alerts using AWS CloudTrail, Amazon CloudWatch, and AWS Config rules
- Policies for Deep Security proactive host-based protection to include preventing, monitoring, logging, and alerting for anti-malware, web reputation, file integrity, IPS/IDS, and host firewall

AWS Services

The core AWS components used by this Quick Start include the following AWS services. (If you are new to AWS, see [Getting Started with AWS](#).)

- **AWS CloudTrail** – AWS CloudTrail records AWS API calls and delivers log files that include caller identity, time, source IP address, request parameters, and response elements. The call history and details provided by CloudTrail enable security analysis, resource change tracking, and compliance auditing.

- **Amazon CloudWatch** – Amazon CloudWatch is a monitoring service for AWS Cloud resources and the applications you run on AWS. You can use Amazon CloudWatch to collect and track metrics, collect and monitor log files, set alarms, and automatically react to changes in your AWS resources.

- **AWS Config** – AWS Config is a fully managed service that provides you with an AWS resource inventory, configuration history, and configuration change notifications to enable security and governance. AWS Config rules enable you to automatically check the configuration of AWS resources recorded by AWS Config.

 Note The AWS Config rules feature is currently available in the AWS Regions listed on the [AWS Regions and Endpoints webpage](#).

- **Amazon EBS** – Amazon Elastic Block Store (Amazon EBS) provides persistent block-level storage volumes for use with Amazon EC2 instances in the AWS Cloud. Each Amazon EBS volume is automatically replicated within its Availability Zone to protect you from component failure, offering high availability and durability. Amazon EBS volumes provide the consistent and low-latency performance needed to run your workloads.

- **Amazon EC2** – The Amazon Elastic Compute Cloud (Amazon EC2) service enables you to launch virtual machine instances with a variety of operating systems. You can
choose from existing Amazon Machine Images (AMIs) or import your own virtual machine images.

- **Elastic Load Balancing** – Elastic Load Balancing automatically distributes traffic across multiple EC2 instances, to help achieve better fault tolerance and availability.

- **Amazon Glacier** – Amazon Glacier is a storage service for archiving and long-term backup of infrequently used data. It provides secure, durable, and extremely low-cost storage, supports data transfer over SSL, and automatically encrypts data at rest. With Amazon Glacier, you can store your data for months, years, or even decades at a very low cost.

- **Amazon RDS** – Amazon Relational Database Service (Amazon RDS) enables you to set up, operate, and scale a relational database in the AWS Cloud. It also handles many database management tasks, such as database backups, software patching, automatic failure detection, and recovery, for database products such as MySQL, MariaDB, PostgreSQL, Oracle, Microsoft SQL Server, and Amazon Aurora. This Quick Start includes a MySQL database by default.

- **Amazon VPC** – The Amazon Virtual Private Cloud (Amazon VPC) service lets you provision a private, logically isolated section of the AWS Cloud where you can launch AWS services and other resources in a virtual network that you define. You have complete control over your virtual networking environment, including selection of your own IP address range, creation of subnets, and configuration of route tables and network gateways.

Trend Micro Deep Security

Trend Micro’s Deep Security is a host-based security product that provides Anti-Malware, Host Firewall, Intrusion Prevention, File Integrity Monitoring, Log Inspection, Web Application Firewalling, and Content Filtering modules in a single agent running in the guest operating system.

- **Anti-malware with web reputation** protects cloud instances against viruses, spyware, Trojans, and other malware with zero in-guest footprint. Performance is optimized to avoid antivirus storms commonly seen in full system scans and pattern updates from traditional security capabilities. This feature provides protection from sophisticated attacks in virtual environments by isolating malware from critical operating system and security components.

- **Intrusion prevention** examines all incoming and outgoing traffic for protocol deviations, policy violations, or content that signals an attack. This feature automatically protects against known but unpatched vulnerabilities by virtually
patching (shielding) from an unlimited number of exploits, pushing protection to thousands of servers in minutes without reboots.

- **Bidirectional host-based firewall** decreases the attack surface of cloud instances and servers with fine-grained filtering, policies per network, and location awareness for all IP-based protocols and frame types.

- **Integrity monitoring** monitors critical operating system and application files, such as directories, registry keys, and values, to detect and report malicious and unexpected changes in real time.

- **Log inspection** collects and analyzes operating system and application logs in over 100 log file formats, identifying suspicious behavior, security events, and administrative events across your cloud. Events can be forwarded to security information and event management (SIEM) products or centralized logging servers for correlation, reporting, and archiving.

Best Practices

The architecture built by this Quick Start supports AWS and Trend Micro best practices for high availability and security:

- Multi-AZ architecture intended for high availability
- Isolation of instances between private/public subnets
- Security groups limiting access to only necessary services
- Network access control list (ACL) rules to filter traffic into subnets as an additional layer of network security
- A secured bastion host instance to facilitate restricted login access for system administrator actions
- Standard IAM policies with associated groups and roles, exercising least privilege
- Monitoring and logging; alerts and notifications for critical events
- S3 buckets (with security features enabled) for logging, archive, and application data
- Implementation of proper load balancing and Auto Scaling capabilities
- HTTPS-enabled Elastic Load Balancing (ELB) load balancers with hardened security policy
- Amazon RDS database backup and encryption
How You Can Use This Quick Start
You can build an environment that serves as an example for learning, as a prototyping environment, or as a baseline for customization.

Since AWS provides a very mature set of configuration options (and new services are being released all the time), this Quick Start provides security templates that you can use for your own environment. These security templates (in the form of AWS CloudFormation templates) provide a comprehensive rule set that can be systematically enforced. You can use these templates as a starting point and customize them to match your specific use cases.

Cost and Licenses
You are responsible for the cost of the AWS services and Trend Micro Deep Security software used for this Quick Start reference deployment. There is no additional cost for using the Quick Start.

The AWS CloudFormation template for this Quick Start includes configuration parameters that you can customize. Some of these settings will affect the cost of deployment. For cost estimates, see the pricing pages for each AWS service you will be using. Prices are subject to change.

Because this Quick Start uses Trend Micro AMIs from the AWS Marketplace, you must be subscribed to Trend Micro Deep Security for AWS Marketplace before you launch the Quick Start. There are two licensing options: Per Protected Instance Hour and Bring Your Own License (BYOL). See step 2 in the deployment section for details and links.

AWS CloudFormation Templates
An AWS CloudFormation template is a JSON (JavaScript Object Notation)-formatted text file that describes the AWS infrastructure needed to run an application or service along with any interconnections among infrastructure components. You can deploy a template and its associated collection of resources (called a stack) by using the AWS Management Console, the AWS Command Line Interface (AWS CLI), or the AWS CloudFormation API. AWS CloudFormation is available at no additional charge, and you pay only for the AWS resources needed to run your applications. Resources can consist of any AWS resource you define within the template. For a complete list of resources that can be defined within an AWS CloudFormation template, see the AWS Resource Types Reference in the AWS documentation.
AWS CloudFormation Stacks

When you use AWS CloudFormation, you manage related resources as a single unit called a stack. In other words, you create, update, and delete a collection of resources by creating, updating, and deleting stacks. All the resources in a stack are defined by the stack’s AWS CloudFormation template.

To update resources, you first modify the stack templates and then update the stack by submitting the modified template. You can work with stacks by using the AWS CloudFormation console, AWS CloudFormation API, or AWS CLI.

For more information about AWS CloudFormation and stacks, see Get Started in the AWS CloudFormation documentation.

Templates Used in this Quick Start

This Quick Start uses nested AWS CloudFormation templates to deploy the architecture for a multi-tier, Linux-based web application with comprehensive protection provided by Trend Micro Deep Security.

The Quick Start consists of a main template and eight child templates: IAM, logging, production VPC, management VPC, Trend Micro Deep Security, Config rules, NAT instance, and application. These templates are designed to deploy the architecture within stacks that align with AWS best practices and the security compliance framework. The following table describes each template and its dependencies. To view the child templates, see the GitHub repository.

<table>
<thead>
<tr>
<th>Stack and template</th>
<th>Description</th>
<th>Dependencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main stack</td>
<td>Primary template file that deploys the rest of the stacks and passes parameters between nested templates automatically.</td>
<td>None</td>
</tr>
<tr>
<td>(main.template)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>— or see GovCloud version</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAM stack</td>
<td>Creates a basic IAM configuration with custom policies, groups, and roles.</td>
<td>None</td>
</tr>
<tr>
<td>(iam.template)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logging stack</td>
<td>Sets up baseline AWS Config rules for monitoring. Enables AWS CloudTrail, S3 buckets, and bucket policies for logging and archive data. Creates standard Amazon CloudWatch alarms for security-related CloudTrail events.</td>
<td>None</td>
</tr>
<tr>
<td>(logging.template)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stack and template</td>
<td>Description</td>
<td>Dependencies</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Production VPC stack</td>
<td>Configures a secure Amazon VPC for a public-facing application that includes subnets, NAT instances or NAT gateways, route tables, and custom network access control list (network ACL) rules.</td>
<td>None</td>
</tr>
<tr>
<td>(vpc-production.template)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management VPC stack</td>
<td>Configures a secure Amazon VPC for management functions that support the production VPC, and includes subnets, NAT, route tables, custom network access control list (network ACL) rules, and a restricted, public-facing bastion host to support a secured login path for administrator access.</td>
<td>Production VPC stack</td>
</tr>
<tr>
<td>(vpc-management.template)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trend Micro Deep Security stack</td>
<td>Sets up an Amazon RDS database, HTTPS Elastic Load Balancing, Amazon EC2 instances, Amazon EC2 security groups, IAM security groups, IAM users, and IAM roles.</td>
<td>Management VPC stack</td>
</tr>
<tr>
<td>bundle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Config rules stack</td>
<td>Sets up baseline AWS Config rules for monitoring.</td>
<td>IAM, Production VPC, and Management VPC stacks</td>
</tr>
<tr>
<td>(config-rules.template)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT instance stack</td>
<td>Conditionally launched by the Management and Production VPC templates to set up EC2 instances for NAT in AWS Regions where the managed NAT gateway capability is not yet available.</td>
<td>None</td>
</tr>
<tr>
<td>(template-nat-instance.json)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application stack</td>
<td>Sets up EC2 instances for reverse proxy and web application, an Amazon RDS database, HTTPS Elastic Load Balancing, Amazon CloudWatch alarms, and Auto Scaling groups.</td>
<td>Production VPC stack</td>
</tr>
<tr>
<td>(application.template)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The **main.template** template is the entry point for launching the entire architecture, and also allows parameters to be passed into each of the nested stacks. The JSON templates for those nested stacks deploy the resources for the architecture.
To deploy the entire architecture (including IAM and Amazon VPC), use the **main.template** template when launching the stacks. To deploy the full package, the IAM user must have permissions to deploy the resources each template creates, which includes IAM configuration for groups and roles.

You can also edit **main.template** to customize stacks or to omit stacks to be deployed. This can be useful for provisioning teams who must deploy the initial base architecture in accounts for application owners. For more information about deployment options and use cases, see [Deployment Methods](#).

Additionally, you can deploy each stack independently. However, this requires that you pass individual parameters to each template upon launch, instead of relying on the main template to pass these values automatically.

Managing the Quick Start Source Files

We’ve provided a [GitHub repository](#) for the tools and templates for this Quick Start so you can modify, extend, and customize them to meet your needs. You can also use your own Git or Apache Subversion source code repository, or use [AWS CodeCommit](#). This is recommended to ensure proper version control, developer collaboration, and documentation of updates.

The GitHub repository for this Quick Start includes the following directories and files:

<table>
<thead>
<tr>
<th>Directory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>assets/</td>
<td>Security controls matrix and architecture diagram</td>
</tr>
<tr>
<td>templates/</td>
<td>AWS CloudFormation template files for deployment</td>
</tr>
<tr>
<td>submodules/</td>
<td>Any additional tools and scripts</td>
</tr>
<tr>
<td>README.md</td>
<td>Readme file for basic information on this package</td>
</tr>
</tbody>
</table>

Uploading the Templates to Amazon S3

The Quick Start templates are available in an Amazon S3 bucket for Quick Starts. If you’re using your own S3 bucket, you can upload the AWS CloudFormation templates by using the AWS Management Console or the AWS CLI, by following these instructions.

Using the Console

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://console.aws.amazon.com/s3/.
2. Choose a bucket to store the templates in.
3. Choose **Upload** and specify the local location of the file to upload.
4. Upload all template files to the same S3 bucket.
5. Find the template URLs by selecting each template file, and then choosing **Properties**. Make a note of the URLs.

Using the AWS CLI
1. Download the AWS CLI tool from https://aws.amazon.com/cli/.
2. Use the following AWS CLI command to upload each template file:
   ```bash
   aws s3 cp <template file>.json s3://<s3bucketname>/
   ```

Updating the Amazon S3 URLs
The template for the main stack lists the Amazon S3 URLs for the nested stacks. If you upload the templates to your own S3 bucket and would like to deploy the templates from there, you must modify the `vTemplateUrlPrefix` in the `Mappings` section of the `main.template` file.

Planning the Deployment

Prerequisites

Specialized Knowledge
This Quick Start requires a moderate to high level of understanding of the process to achieve and manage NIST 800-53 control requirements and compliance processes within a traditional hosting environment.

Additionally, this solution is targeted at Information Technology (IT) NIST 800-53 assessors and security personnel, and assumes familiarity with basic security concepts in the area of networking, operating systems, data encryption, operational controls, and cloud computing services.

Familiarity with AWS Services
This deployment guide also requires a moderate level of understanding of AWS services and requires the following, at a minimum:

- Access to a current AWS account with IAM administrator-level permissions
- Basic understanding of AWS services, AWS service limits, and AWS CloudFormation
- Knowledge of architecting applications on AWS
- Understanding of security and compliance requirements in the customer organization

AWS offers training and certification programs to help you develop skills to design, deploy, and operate your infrastructure and applications on the AWS Cloud. Whether you are just getting started or looking to deepen your technical expertise, AWS has a variety of resources to meet your needs. For more information, see the AWS Training and Certification website, or read the AWS Training and Certification Overview.

Familiarity with Trend Micro Deep Security

This deployment guide also requires a moderate level of Trend Micro’s Deep Security product knowledge:

- General understanding of host-based security implementation and management
- Basic understanding of Deep Security product features and management
- Knowledge of Deep Security architecture and implementation on AWS
- Understanding of security and compliance requirements in the customer organization

Trend Micro offers training programs to help you develop skills to design, deploy, and operate your applications on the AWS Cloud. More information is available at Trend Micro’s AWS website at http://aws.trendmicro.com/.

AWS Account

If you don’t already have an AWS account, create one at https://aws.amazon.com by following the on-screen instructions. Part of the sign-up process involves receiving a phone call and entering a PIN using the phone keypad.
Technical Requirements

Before you launch the Quick Start, your account must be configured as specified in the following table. Otherwise, deployment might fail. For step-by-step configuration instructions, see the Pre-Deployment Steps section.

<table>
<thead>
<tr>
<th>Resources</th>
<th>Resource</th>
<th>Default</th>
<th>Used in this deployment (by default)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPCs</td>
<td></td>
<td>5 per region</td>
<td>2</td>
</tr>
<tr>
<td>EIPs</td>
<td></td>
<td>5 per region</td>
<td>5</td>
</tr>
<tr>
<td>IAM groups</td>
<td></td>
<td>100 per account</td>
<td>6</td>
</tr>
<tr>
<td>IAM roles</td>
<td></td>
<td>250 per account</td>
<td>5</td>
</tr>
<tr>
<td>Amazon EC2 Auto Scaling groups</td>
<td></td>
<td>20 per region</td>
<td>2</td>
</tr>
<tr>
<td>ELB load balancers</td>
<td></td>
<td>20 per region</td>
<td>4</td>
</tr>
</tbody>
</table>

Regions

The AWS services used in this Quick Start exist in all commercial regions, but AWS Config rules, which are used for configuration enforcement, are currently available only in the regions listed in AWS Regions and Endpoints. If you require this capability, you must deploy in one of these regions until AWS Config rules become available more widely.

It is important to be aware of what is available in the region you choose to deploy. To see the latest list of supported services per region, see AWS Regions and Endpoints in the AWS documentation. For information about service differences in the AWS GovCloud (US) Region, see Supported Services in the AWS GovCloud documentation.

AWS Config and AWS Config rules

If you deploy this Quick Start in an AWS region where AWS Config and AWS Config rules are available, the config-rules.template template will attempt to automatically use the service. However, the deployment will fail if you have not previously manually set up AWS Config in that region. Before you deploy the Quick Start, navigate to the AWS Config console, and choose the Get Started Now button. Note that this feature is currently available only in the AWS Regions listed in AWS Regions and Endpoints.

Amazon S3 URLs

If you’re copying the templates to your own S3 bucket for deployment, make sure that you update vTemplateUrlPrefix in the Mappings section of the main.template file with a valid and accessible URL. Otherwise, deployment will fail.

IAM permissions

To deploy the Quick Start using the console, you must be logged in to the AWS Management Console with IAM permissions for the resources and actions the templates will deploy. The AdministratorAccess managed policy within IAM provides sufficient permissions, although your organization may choose to use a custom policy with more restrictions.

S3 buckets

Unique S3 bucket names are automatically generated based on the account number and region. If you delete a stack, the logging buckets are not deleted (to support security review). If you plan to re-deploy this Quick Start in the same region, you must first manually delete the previously created S3 buckets; otherwise, the re-deployment will fail.
Deployment Methods
You can deploy the Quick Start templates by using AWS CLI commands or from the AWS Management Console. You can also deploy the template package as an AWS Service Catalog product. AWS Service Catalog enables a self-service model for deploying applications and architecture on AWS. You can create portfolios that include one or more products, which are defined by AWS CloudFormation templates. You can grant IAM users, groups, or roles access to specific portfolios, which they can then launch from a separate interface. We’ve provided step-by-step instructions for the AWS Management Console deployment option in the following sections.

Pre-Deployment Steps
Before you deploy the NIST Quick Start templates, follow the instructions in this section to confirm that your account is set up correctly:

- Review the service limits and service usage of your AWS account and request increases if required, to ensure that there is available capacity to launch resources in your account.

- Ensure that your AWS account is set up with at least one SSH key pair (but preferably two separate key pairs) in the AWS Region where you plan to deploy, for use with the bastion login host and other Amazon EC2 hosts.

- Ensure that you have manually set up AWS Config in the AWS Config console, if you are deploying into an AWS Region where AWS Config is available. AWS Config is currently available only in the regions listed in AWS Regions and Endpoints.

Review AWS Service Limits
To review and (if necessary) increase service limits for the resources you need for the NIST Quick Start deployment, you use the AWS Trusted Advisor console and the Amazon EC2 console. You’ll need the resources specified in the Technical Requirements table.

Use Trusted Advisor to view the existing service limits for Amazon VPC, IAM groups, and IAM roles within your account, and ensure that there is availability to deploy additional resources:

2. In the navigation pane, choose Performance.
3. On the Performance page, scroll through the list of performance checks until you find Service Limits, and expand that section.
4. Scroll through the service limit names and compare the Limit Amount column to the Current Usage column, to ensure that you can allocate the following without exceeding the default limit in the AWS Region you will deploy this Quick Start into (US East [N. Virginia] is recommended):

- Two (2) more VPCs
- Six (6) more IAM groups
- Five (5) more IAM roles

If an increase is needed, you can choose the limit name to open the limit increase request form shown in Figure 4.

![Figure 4: Requesting a service limit increase](image)

Now use the Amazon EC2 console to check your limits for Elastic IP addresses, load balancers, and Auto Scaling groups:

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, under Network & Security, choose Elastic IPs.
3. Count the number of allocated Elastic IPs (if any) displayed in the list, and ensure that you can allocate five (5) more without exceeding the default limit of 5 (or the limit increase you previously requested).

4. In the navigation pane, under **Load Balancing**, choose **Load Balancers**.

5. Count the number of existing load balancers (if any) displayed in the list and ensure that you can create four (4) more without exceeding the default limit of 20 (or the limit increase you previously requested).

6. In the navigation pane, under **Auto Scaling**, choose **Auto Scaling Groups**.

7. Count the number of existing Auto Scaling groups (if any) displayed in the list and ensure that you can create two (2) more without exceeding the default limit of 20 (or the limit increase you previously requested).

Create Amazon EC2 Key Pairs

Make sure that at least one Amazon EC2 **key pair** exists within your AWS account **in the region you are planning to deploy the Quick Start in**.

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Use the region selector in the navigation bar to choose the AWS region where you plan to deploy.

3. In the navigation pane, under **Network & Security**, choose **Key Pairs**.

4. In the key pair list, verify that at least one available key pair (but preferably two available key pairs) exist and make note of the key pair name(s). You’ll need to provide a key pair name for the parameters **pEC2KeyPairBastion** (for bastion host login access) and **pEC2KeyPair** (for all other Amazon EC2 host login access) when you launch the Quick Start. Although you can use the same key pair for both parameters, we recommend that you use a different key pair for each.

 If you want to create a new key pair, choose **Create Key Pair**. For additional information, see the [Amazon EC2 documentation](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-ec2-key-pairs.html).

 ![Create Key Pair](Figure 5: Creating a key pair)
Note If you're deploying the Quick Start for testing or proof of concept, we recommend that you create a new key pair instead of specifying a key pair that's already being used by a production instance.

Set up AWS Config

If AWS Config has not yet been initialized in the region where you are deploying this Quick Start, follow the steps below **in the region where you are planning to deploy the Quick Start**.

2. Use the region selector in the navigation bar to choose the AWS Region where you plan to deploy.
3. In the AWS Config console, choose **Get Started** (or **Get Started Now**).

Figure 6: AWS Config console

4. On the **Set up AWS Config** screen, you may leave all default values in place, or make modifications as you see fit, and then choose **Continue**.
Figure 7: AWS Config setup screen

5. On the next screen, you are prompted to select or create an IAM role for AWS Config. You may leave all default values in place, or make modifications as you see fit, and then choose `Allow`.
6. On the **Resource Inventory** screen, you should now see **Recording is on** in the upper-right corner. This indicates that AWS Config is now active in this AWS Region.

![Figure 8: Specifying an IAM role for AWS Config](image)

![Figure 9: AWS Config activation](image)
Deployment Steps

Follow the step-by-step instructions in this section to sign in to your AWS account, customize the Quick Start templates, and deploy the software into your account.

What We’ll Cover

The procedure for deploying the Quick Start architecture on AWS consists of the following steps, which we’ll cover in detail in the following sections.

Step 1. Sign in to your AWS account

- Sign in to your AWS account, and make sure that it’s configured correctly.

Step 2. Subscribe to Trend Micro Deep Security

Step 3. Launch the stacks

- Launch the main AWS CloudFormation template into your AWS account.
- Enter values for required parameters.
- Review the other template parameters, and customize their values if necessary.

Step 4. Test your deployment

- Use the URL provided in the Outputs tab for the main stack to test the deployment.
- Use the IP address for the bastion host provided by the Outputs tab for the main stack, and use your private key if you would like to connect to that host through SSH.

Step 1. Sign in to Your AWS Account

1. Sign in to your AWS account at https://aws.amazon.com with an IAM user role that has the appropriate privileges (see IAM Permissions earlier in this document).

2. Make sure that your AWS account is configured correctly. See the Technical Requirements and Pre-Deployment Steps sections for information. Note that if you plan to use an AWS Region with the AWS Config capability, you must first set up the AWS Config service manually by following the instructions in the previous section.

3. Use the region selector in the navigation bar to choose the AWS Region where you want to deploy the NIST high-impact controls architecture on AWS.
Amazon EC2 locations are composed of Regions and Availability Zones. Regions are dispersed and located in separate geographic areas. This Quick Start uses the m3.large instance type for the WordPress and Nginx portion of the deployment. m3.large instances are currently available in all AWS Regions except China (Beijing). The AWS Config rules feature is currently available in the AWS Regions listed on the AWS Regions and Endpoints webpage.

![Figure 10: Choosing an AWS Region](image)

Tip Consider choosing a region closest to your data center or corporate network to reduce network latency between systems running on AWS and the systems and users on your corporate network.

4. Select the key pair that you created earlier. In the navigation pane of the Amazon EC2 console, choose **Key Pairs**, and then choose the key pair from the list.

Step 2. Subscribe to Trend Micro Deep Security

The AWS Quick Start uses Amazon Machine Images (AMIs) from AWS Marketplace. Before you launch the Quick Start, you must subscribe to Trend Micro Deep Security from AWS Marketplace.

There are two available licensing options. To subscribe, use the following links to open the AWS Marketplace page for the licensing option of your choice:

- **Per Protected Instance Hour**: A consumption based option that allows you to pay hourly per protected instance. Your costs will be determined by the number of instances you
are protecting each hour, and will show up on your AWS bill. For current prices please visit the [AWS Marketplace page](#) for this licensing option.

—or—

- **Bring Your Own License (BYOL):** A perpetual licensing option for organizations that prefer traditional procurement. Please contact Trend Micro for a license key at aws@trendmicro.com.

Note The Quick Start is designed to support deployment of up to 2,000 protected instances. If you are protecting more than 2,000 instances, please contact aws@trendmicro.com for free assistance with additional deployment options.

Note Both licensing options can also be launched in the AWS GovCloud (US) Region.

Step 3. Launch the Stacks

This automated AWS CloudFormation template deploys the Quick Start architecture in multiple Availability Zones into Amazon VPCs. Please review the [technical requirements](#) and [pre-deployment steps](#) before launching the stacks.

1. **Launch the AWS CloudFormation template** into your AWS account.

 The template will be deployed into the AWS Region that appears in the navigation bar at the upper-right corner of the AWS Management Console. You can change the region by using the region selector in the navigation bar. Note that if you select a region where AWS Config is available, make sure to manually initialize the AWS Config service in that region.

 If you have an AWS GovCloud (US) account, you can [launch the template in the AWS GovCloud (US) Region](#).

 The stacks take approximately one hour to create.

Note You are responsible for the cost of the AWS services used while running this Quick Start reference deployment. There is no additional cost for using this Quick Start. For full details, see the pricing pages for each AWS service you will be using in this Quick Start. Prices are subject to change.
The Quick Start deployment includes ten trial licenses for Trend Micro Deep Security, which will protect one EC2 instance; see http://aws.trendmicro.com for additional licensing and purchasing options.

2. On the **Select Template** page, keep the default settings for the template URL, and then choose **Next**.

3. On the **Specify Details** page, provide the required parameter values for the template. These are described in the following tables.

<table>
<thead>
<tr>
<th>Parameter label (name)</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database Password (pDBPassword)</td>
<td>Requires input</td>
<td>Password for the database administrator account. This must be a complex password that’s between 8 and 28 mixed, alphanumeric characters.</td>
</tr>
<tr>
<td>Notification Email Address (pNotifyEmail)</td>
<td>distlist@example.org</td>
<td>Notification email address for security events (you will receive confirmation email).</td>
</tr>
<tr>
<td>Existing SSH Key for Bastion Instance (pEC2KeyPairBastion)</td>
<td>Requires input</td>
<td>The SSH key pair in your account to use for bastion host login (see pre-deployment steps).</td>
</tr>
<tr>
<td>Existing SSH Key for Other Instances (pEC2KeyPair)</td>
<td>Requires input</td>
<td>The SSH key pair in your account to use for all other host logins (see pre-deployment steps).</td>
</tr>
<tr>
<td>Support Config (pSupportsConfig)</td>
<td>Requires input</td>
<td>Select Yes if you are deploying in an AWS Region where AWS Config is available and you want to use AWS Config (see pre-deployment steps).</td>
</tr>
<tr>
<td>First Availability Zone (pAvailabilityZoneA)</td>
<td>Requires input</td>
<td>Select your desired first Availability Zone (Note: Some Availability Zones may be restricted. If the deployment fails, you may need to use a different Availability Zone.)</td>
</tr>
<tr>
<td>Second Availability Zone (pAvailabilityZoneB)</td>
<td>Requires input</td>
<td>Select your desired second Availability Zone (Note: Some Availability Zones may be restricted. If the deployment fails, you may need to use a different Availability Zone.)</td>
</tr>
</tbody>
</table>

Trend Micro Deep Security Manager Configuration:

<table>
<thead>
<tr>
<th>Parameter label (name)</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrator password for Deep</td>
<td>Requires input</td>
<td>The Deep Security Manager administrator password. Must be 8-41 characters long and can only contain</td>
</tr>
</tbody>
</table>
Security (DeepSecurityAdminPass)
Default: alphanumeric characters or the following special characters !^*-_+

AWS Quick Start Configuration:

<table>
<thead>
<tr>
<th>Parameter label (name)</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quick Start S3 Bucket Name (QSS3BucketName)</td>
<td>aws-quickstart</td>
<td>The S3 bucket you have created for your copy of Quick Start assets, if you decide to customize or extend the Quick Start for your own use. The bucket name can include numbers, lowercase letters, uppercase letters, and hyphens, but should not start or end with a hyphen.</td>
</tr>
<tr>
<td>Quick Start S3 Key Prefix (QSS3KeyPrefix)</td>
<td>quickstart-compliance-nist-high/</td>
<td>The S3 key name prefix used to simulate a folder for your copy of Quick Start assets, if you decide to customize or extend the Quick Start for your own use. This prefix can include numbers, lowercase letters, uppercase letters, hyphens, and forward slashes.</td>
</tr>
</tbody>
</table>

Other Parameters:

<table>
<thead>
<tr>
<th>Parameter label (name)</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pVPCTenancy</td>
<td>default</td>
<td>The tenancy attribute for the instances launched into the VPC. By default, all instances in the VPC run as shared-tenancy instances. Set this parameter to dedicated to run them as single-tenancy instances instead. For more information, see Dedicated Instances in the Amazon EC2 User Guide.</td>
</tr>
</tbody>
</table>

Note You can also download the main template and edit it to create your own parameters based on your specific deployment scenario.

4. On the **Options** page, you can [specify tags](https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cloudformation-create-stack-parameters.html) (key-value pairs) for resources in your stack and [set additional options](https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-stack-additional-properties.html). You can use the tags to organize and control access to resources in the stacks. When you’re done, choose Next.

5. On the **Review** page, review the settings and select the acknowledgement check box. This simply states that the template will create IAM resources.
6. Choose **Create** to deploy the stack.

7. Monitor the status of the stack being deployed. When the status field shown in Figure 12 displays **CREATE_COMPLETE for all the stacks deployed**, the cluster for this reference architecture is ready. Since you're deploying the full architecture, you'll see eight stacks listed (for the main template and seven nested templates).

![Figure 11: IAM resource acknowledgement](image)

![Figure 12: Status message for deployment](image)

Step 4. Test Your Deployment

To test your deployment, choose the link for **LandingPageURL**, as shown in Figure 13. This URL is available from the **Outputs** tab for the main stack.
Figure 13: Opening the landing page

The link should launch a new page in your browser that looks similar to Figure 14.
Congratulations!

You have successfully launched the **Standardized Architecture for NIST High-based Assurance Frameworks on the AWS Cloud** Quick Start!

What Now?

This Quick Start installs a sample WordPress application that you can configure. Of course, this is just an example to get you started. You can use this architecture as a reference when creating an architecture that supports your applications.

View the **Security Control Matrix** that maps the specific AWS and Trend Micro security controls to the NIST 800-53 High requirements as well as FedRAMP and Trusted Internet Connection Initiative (TIC) Capabilities Version 2.0 and others.

Questions? Need Help? Please contact us at aws@trendmicro.com.

![Figure 14: Landing page for Quick Start on AWS](image)

This deployment builds a working demo of a Multi-AZ WordPress site. To connect to the WordPress site, choose the URL provided for the WordPress application on the landing page shown in Figure 14. This URL is also available from the **WebsiteURL** link on the **Outputs** tab shown in Figure 13 for the main stack.
Note WordPress is provided for testing and proof-of-concept purposes only; it is not intended for production use. You can replace it with another application of your choice.

This URL brings up the page shown in Figure 15. You can install and test the WordPress deployment from here.

![Installing WordPress](image)

Figure 15: Installing WordPress

Note The WordPress application included in this Quick Start deployment is for demo purposes only. Application-level security, including patching, operating system updates, and addressing application vulnerabilities, is the customer’s responsibility (see the AWS Shared Responsibility Model). For this Quick Start, we recommend that you delete the AWS CloudFormation stacks after your proof-of-concept demo or testing is complete.
For Deep Security, this deployment provides a web console for configuration and management, illustrated in Figure 16. To access this web console, choose the URL provided from the DeepSecurityConsole link on the Outputs tab (shown previously in Figure 13) for the main stack.

![Deep Security Manager Console](image)

Figure 16: Deep Security Manager Console

Now that you’ve deployed and tested the NIST architecture on AWS, please take a few minutes to complete our survey for this Quick Start. Your response is anonymous and will help us improve these reference deployments.

Deleting the Stacks

When you’ve finished using the baseline environment, you can delete the stacks. Deleting a stack, either via CLI and APIs or through the AWS CloudFormation console, will remove all the resources created by the template for that stack. **The only exceptions are the S3 buckets for logging and backup. By default, the deletion policy for those buckets is set to “Retain,” so you have to delete them manually.**

Important This Quick Start deployment uses nested AWS CloudFormation templates, so deleting the main stack will remove the nested stacks and all associated resources.
Troubleshooting

If you encounter a **CREATE_FAILED** error when you deploy the Quick Start, refer to the following table for known issues and solutions.

<table>
<thead>
<tr>
<th>Error message</th>
<th>Possible cause</th>
<th>What to do</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following resource(s) failed to create: rConfigRuleForRequiredTags,</td>
<td>The Support Config parameter was set to Yes, but AWS Config isn’t</td>
<td>Set the Support Config parameter to No, or select another region.</td>
</tr>
<tr>
<td>rConfigRuleForUnrestrictedPorts, rConfigRuleForSSH,</td>
<td>available in the region you selected, or AWS Config has not been initialized.</td>
<td>Also make sure that AWS Config is set up properly, as described in the</td>
</tr>
<tr>
<td>rConfigRulesLambdaRole]</td>
<td></td>
<td>pre-deployment steps.</td>
</tr>
<tr>
<td>Maximum VPCs limit reached</td>
<td>You’ve exceeded the number of VPCs allowed in your account.</td>
<td>Delete VPCs and/or request a limit increase. Try to create the stack again.</td>
</tr>
<tr>
<td>Maximum EIPs limit reached</td>
<td>You’ve exceeded the limit of Elastic IP addresses in your account.</td>
<td>Disassociate Elastic IPs or request a Elastic IP limit increase, and try</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to create the stack again. For more information, see technical</td>
</tr>
<tr>
<td>Other limits exceeded</td>
<td>You’ve exceeded the use of resources in your AWS account.</td>
<td>See technical requirements, and request service limit increases as</td>
</tr>
<tr>
<td></td>
<td></td>
<td>necessary.</td>
</tr>
</tbody>
</table>

If the problem you encounter isn’t covered in this table, we recommend that you relaunch the template with **Rollback on failure** set to **No** (this setting is under **Advanced** in the AWS CloudFormation console, **Options** page) and open a support case in the **AWS Support Center** for further troubleshooting. When rollback is disabled, the stack’s state will be retained and the instance will be left running, so the support team can help troubleshoot the issue.

Important When you set **Rollback on failure** to **No**, you’ll continue to incur AWS charges for this stack. Please make sure to delete the stack when you’ve finished troubleshooting.

Integrating with AWS Service Catalog

You can add the AWS CloudFormation templates for this Quick Start to AWS Service Catalog as portfolios or products to manage them from a central location. This helps support consistent governance, security, and compliance requirements. It also enables users to quickly deploy only the approved IT services they need.
For complete information about using AWS Service Catalog, see the [AWS documentation](https://aws.amazon.com/documentation/servicecatalog/).

The following table provides links for specific tasks.

<table>
<thead>
<tr>
<th>To</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a new portfolio</td>
<td>Creating and Deleting Portfolios</td>
</tr>
<tr>
<td>Create a new product</td>
<td>Adding and Removing Products</td>
</tr>
<tr>
<td>Give users access</td>
<td>Granting Access to Users</td>
</tr>
<tr>
<td>Assign IAM roles for deploying stacks</td>
<td>Applying Launch Constraints</td>
</tr>
<tr>
<td>Make sure that the IAM role has a policy and trust relationship defined.</td>
<td></td>
</tr>
<tr>
<td>Assign tags to portfolios to track resource ownership, access, and cost allocations</td>
<td>Tagging Portfolios</td>
</tr>
<tr>
<td>Perform other administrative tasks</td>
<td>AWS Service Catalog Administrator Guide</td>
</tr>
<tr>
<td>Launch products from AWS Service Catalog</td>
<td>AWS Service Catalog User Guide</td>
</tr>
</tbody>
</table>

Additional Resources

AWS services

- AWS CloudFormation
 https://aws.amazon.com/documentation/cloudformation/

- Amazon EC2 User Guide for Linux:

- Amazon VPC
 https://aws.amazon.com/documentation/vpc/

- AWS CloudTrail
 https://aws.amazon.com/documentation/cloudtrail/

- AWS Config
 https://aws.amazon.com/documentation/config/

- Amazon CloudWatch
 https://aws.amazon.com/documentation/cloudwatch/

- AWS Identity and Access Management
 https://aws.amazon.com/documentation/iam/
• Amazon RDS
 https://aws.amazon.com/documentation/rds/

• AWS CLI
 https://aws.amazon.com/documentation/cli/

• AWS Service Catalog
 https://aws.amazon.com/documentation/servicecatalog/

Trend Micro

• Trend Micro AWS landing page
 http://aws.trendmicro.com/

• Deep Security product page

• Technical support resources

NIST 800-53

• NIST 800-53 Revision 4

• AWS Architecture and Security Recommendations for Technical Workbook for NIST Compliance in the AWS Cloud

• DoD-Compliant Implementations in the AWS Cloud
 https://d3ulk6ur3a3ha.cloudfront.net/whitepapers/compliance/AWS_DOD_CSM_Reference_Architecture.pdf

Trusted Internet Connection (TIC)

• Guidance for Trusted Internet Connection (TIC) Readiness on AWS
 https://do.awsstatic.com/whitepapers/compliance/Guidance_for_Trusted_Internet_Connection_TIC_Readiness_on_AWS.pdf

Quick Start Reference Deployments

• AWS Quick Start home page
 https://aws.amazon.com/quickstart/
Appendix: Enhancements in This Release

This is part of a set of compliance Quick Starts. AWS is constantly working to improve the design, ease of use, and security features of these solutions. This latest compliance Quick Start for NIST SP 800-53 high-impact controls on the AWS Cloud featuring Trend Micro Deep Security includes the following security and compliance enhancements:

- HTTPS load balancers with custom security policy using TLS and auto-generation of a self-signed certificate for testing purposes
- Network access control list (ACL) rules for filtering ingress/egress traffic as an additional layer of network security
- Security groups to limit both inbound and outbound traffic to only available ports and protocols
- AWS Config rules automatically deployed for monitoring specific resources most relevant to compliance
- Secure Amazon S3 policies for logging and application buckets, including custom lifecycle policies for archiving objects in Amazon Glacier and use of versioning
- Custom CloudWatch alarms and notifications for specific security-related events in CloudTrail logging of root activity, IAM changes, and changes to logging policies
- Simplified AWS CloudFormation templates that decouple components, including VPCs, to allow for easier modification and reuse
- Reduced set of AWS CloudFormation parameter groups and labels to simplify console use during the deployment process
- Elastic Load Balancing and Amazon S3 access logging enabled for the application layer
- Deployment of a secured login bastion host for SSH access to Amazon EC2 instances within the architecture
- Elastic Load Balancing for the Deep Security Manager
- Multi-AZ redundancy for the Deep Security Database through Amazon RDS
- Deep Security Anti-malware and web reputation enabled
- Deep Security Intrusion Prevention rules deployed to protect against network attacks and provide shielding from known vulnerabilities and exploits
- Deep Security Firewall enabled to provide logging on network traffic
• Deep Security Integrity Monitoring started to detect and report unexpected changes to files and the system registry
• Deep Security Log Inspection rules to turn on alerts for important security events
Send Us Feedback

You can visit our GitHub repository to download the templates and scripts for this Quick Start, to post your comments, and to share your customizations with others.

If you haven’t filled out our survey yet, please take a few minutes to do so. Your response is anonymous and will help us improve the quality of this Quick Start and other AWS reference deployments.

For Further Assistance

If you need assistance with an enterprise implementation of the capabilities introduced through this Quick Start, AWS Professional Services can guide and assist with the related training, customization, and implementation of deployment and maintenance processes. Please contact your AWS Account Manager for further information, or send an inquiry to compliance-accelerator@amazon.com.

Document Revisions

<table>
<thead>
<tr>
<th>Date</th>
<th>Change</th>
<th>In sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 2018</td>
<td>Clarified the steps for subscribing to the Trend Micro Deep Security AMI</td>
<td>Step 2</td>
</tr>
<tr>
<td>June 2016</td>
<td>Initial publication</td>
<td>—</td>
</tr>
</tbody>
</table>
Notes

3 Federal Information Security Management Act (40 U.S.C., Sec. 11331).

© 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices

This document is provided for informational purposes only. It represents AWS’s current product offerings and practices as of the date of issue of this document, which are subject to change without notice. Customers are responsible for making their own independent assessment of the information in this document and any use of AWS’s products or services, each of which is provided “as is” without warranty of any kind, whether express or implied. This document does not create any warranties, representations, contractual commitments, conditions or assurances from AWS, its affiliates, suppliers or licensors. The responsibilities and liabilities of AWS to its customers are controlled by AWS agreements, and this document is not part of, nor does it modify, any agreement between AWS and its customers.

The software included with this paper is licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with the License. A copy of the License is located at http://aws.amazon.com/apache2.0/ or in the "license" file accompanying this file. This code is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.