Red Hat OpenShift on the AWS Cloud

Demo and Walkthrough

September 2019

Jay McConnell, Ryan Nitsch, and Mandus Momberg
Amazon Web Services (AWS)

What you’ll accomplish: Learn how to deploy OpenShift on AWS, and then deploy a standard containerized application into OpenShift. Update the application to a native AWS service by using AWS Service Broker.

Estimated time: 90 minutes for deployment, 60 minutes for walkthrough

Cost: You are responsible for the cost of the AWS services and Red Hat OpenShift subscriptions used while running this demo. There is no additional cost for using the demo.

Experience with AWS: Beginner

Experience with Red Hat OpenShift: Beginner

Prerequisites: An AWS account (sign up at https://aws.amazon.com), a Red Hat OpenShift subscription, and a web browser

Contents
Overview..3
Demo components and flow ..3
This demo was created by solutions architects at Amazon Web Services (AWS) for evaluation or proof-of-concept (POC) purposes on the AWS Cloud.

The demo automatically deploys Red Hat OpenShift into your AWS account with sample data. After the demo is up and running, you can use the walkthrough in the following pages for a guided tour of product features.

Quick Start option This demo sets up an evaluation environment. For production-ready deployments, use the Red Hat OpenShift Quick Start.
Overview

Red Hat OpenShift is an open-source container application platform for enterprise application development and deployment that is based on the Kubernetes container orchestrator. In this demo, we will walk through the steps for installing WordPress into OpenShift with a standard MariaDB database. You will then migrate the database to use Amazon Relational Database Service (Amazon RDS) for MariaDB. You will deploy the new database by using AWS Service Broker, which allows native AWS services to be exposed directly in Red Hat OpenShift.

Demo components and flow

This demo builds a simplified version of the Quick Start architecture for Red Hat OpenShift that includes these components:

- An AWS Cloud environment that spans three Availability Zones.
- A virtual private cloud (VPC) configured with public and private subnets according to AWS best practices, to provide you with your own virtual network on AWS.
- An internet gateway to allow access to the internet. This gateway is used by the bastion hosts to send and receive traffic.
- In the public subnets, managed NAT gateways to allow outbound internet access for resources in the private subnets.
- In the public subnets, a bastion host to allow inbound Secure Shell (SSH) access to Amazon Elastic Compute Cloud (Amazon EC2) instances in public and private subnets, and to perform the initial configuration and installation of OpenShift.
- In a public subnet, an AWS Cloud9 workspace preconfigured with a sample WordPress application and the tools needed to complete the demo.
- In the private subnets, three OpenShift master hosts, three OpenShift etcd hosts, and one OpenShift compute node.
- An AWS Cloud9 integrated development environment (IDE) that will be used to complete some of the demo steps.

Figure 1 illustrates the process flow and features you’ll explore with this walkthrough. When the infrastructure is deployed, the demo will walk you through deploying an application (WordPress) into OpenShift, and then updating a component to a native AWS service (Amazon RDS) by using AWS Service Broker.
Figure 1: Process flow for the OpenShift demo on AWS

Technical specifications

The demo provisions and configures the following resources. You won’t be able to customize these resources in the demo environment; for customization options, launch the Quick Start instead.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability Zones</td>
<td>3</td>
</tr>
<tr>
<td>Instance type for OpenShift hosts</td>
<td>t3.xlarge</td>
</tr>
<tr>
<td>Storage</td>
<td>Amazon Elastic Block Store (Amazon EBS) volumes for persistent storage</td>
</tr>
</tbody>
</table>
Resource | Details
--- | ---
Elastic Load Balancing (ELB) load balancers | One load balancer for accessing the OpenShift console and another for application access
Database for WordPress | MariaDB on Amazon RDS using a db.t2.large instance in a single Availability Zone

Deploy the demo

Note These instructions reflect the older version of the AWS CloudFormation console. If you’re using the redesigned console, some of the option names might be different.

1. Create an AWS account, or sign into your existing account.

 If you don’t already have an AWS account, create one at https://aws.amazon.com by following the on-screen instructions.

2. **Sign up to launch the demo.**

 After you answer a few questions and submit the sign-up form, you will be redirected to the AWS CloudFormation console. In the console, you will need to provide the requested information to launch the demo.

 Note If you want to customize the configuration of OpenShift, please deploy the [Quick Start](https://aws.amazon.com) instead.

3. If you don’t already have a Red Hat subscription for OpenShift **with at least eight entitlements available**, you can sign up for a [trial license](https://aws.amazon.com). You will need to provide your Red Hat user name and password when you launch the demo.

4. You also need an OpenShift subscription ID (pool ID) from Red Hat. To get this ID:

 - Log in to https://access.redhat.com.
 - Choose **Subscriptions**, and then choose the **Subscriptions** tab.
 - Search the page for **Red Hat OpenShift** and choose the OpenShift product name.
 - Choose the **Subscriptions** tab, and then choose the subscription number.
 - Note the pool ID that appears on the subscription page.
Figure 2: Choosing the subscription number to see your OpenShift subscription ID

5. In the **Parameters** section of the console, provide values for the following parameters:

<table>
<thead>
<tr>
<th>For parameter</th>
<th>Select or enter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat subscription user name</td>
<td>Enter the user name that you used to log in to https://access.redhat.com in step 4.</td>
</tr>
<tr>
<td>Red Hat subscription password</td>
<td>Enter the password that you used to log in to https://access.redhat.com in step 4.</td>
</tr>
<tr>
<td>Red Hat pool ID</td>
<td>Enter the subscription (pool) ID from step 4.</td>
</tr>
<tr>
<td>Allowed external access CIDR</td>
<td>Enter the CIDR IP range that is permitted to access the OpenShift cluster. If you keep the default value (Auto), only the IP address that launched the stack will be given access to the cluster.</td>
</tr>
</tbody>
</table>

6. On the **Create Stack** page, under **Capabilities**, select the two check boxes, to acknowledge that the template might create AWS Identity and Access Management (IAM) resources and might require the capability to auto-expand macros.

7. Choose **Create** to deploy the demo.

 The demo takes about 90 minutes to deploy.
8. Your stack appears in the list of AWS CloudFormation stacks, with a status of **CREATE_IN_PROGRESS**. When the status is **CREATE_COMPLETE**, the demo is ready to use.

9. Take note of the values in the **Outputs** section of the stack. They will be needed later in the demo walkthrough.

10. Follow the step-by-step instructions in the next section to explore the features of the demo.

Explore Red Hat OpenShift on AWS

Time to complete: About 60 minutes

Steps:

- [Access Red Hat OpenShift](#)
- [Deploy WordPress](#)
- [Update WordPress to use Amazon RDS](#)

Access Red Hat OpenShift

In this demo, we will access both the OpenShift command line interface (CLI) using `oc` commands and the web interface. You can complete all the walkthrough tasks in either interface, or even automate the steps into CI processes. However, for the purposes of this demo, we’ve split up the tasks between the two interfaces, so you can get familiar with both.

1. Connect to the AWS Cloud9 IDE:

 a. Open the [AWS Management Console](#).

 b. In the search box, type **Cloud9**, and then select **Cloud9** from the results.

 c. For the environment whose name ends with **OpenShift-Demo**, choose **Open IDE**.

2. Test the OpenShift CLI:

 a. In the AWS Cloud9 IDE for the demo, choose the **bash** tab at the bottom of the window, and enter the following command to verify that the CLI is able to communicate with OpenShift:

   ```bash
   oc projects
   ```

 The output should say “You are not a member of any projects. You can request a project to be created with the 'new-project' command.”
b. Let’s go ahead and create a project:

```
oc new-project my-wordpress-project
```

3. Connect to the OpenShift console.
 a. In the AWS Cloud9 IDE, retrieve the OpenShift login credentials from AWS Secrets Manager by using this command:

```
./get_cluster_details.sh
```

 Note the output (hostname, user name, password); you’ll need this information later.
 b. Enter the OpenShift web console hostname from the previous step into a web browser.
 c. This demo has been set up using self-signed certificates, so your browser may display security warnings. To access the web console, you will need to accept or bypass these warnings up to three times.
 d. Log in by using the user name and password you noted in step 3(a).

You can now access OpenShift through both the CLI and the web console. Now you’re ready to deploy WordPress into an OpenShift container.

Deploy WordPress with a MariaDB database

OpenShift has a powerful templating capability, so you can describe your application in a YAML file that can be parameterized and processed to produce an application’s components. (YAML is a scripting and configuration language based on JSON.) In this section of the walkthrough, you’ll use a pre-built YAML template to deploy WordPress and MariaDB into your project.

1. Using the Cloud9 editor, choose the `wordpress-template.yaml` file from the Environment window on the left side of the console.

2. Look at the structure of the YAML file. Notice that it includes an objects section that contains the components of the WordPress application and MariaDB database, and a parameters section that defines the parameters that can be specified when applying the template to customize the deployment. In this case, the parameters define the MariaDB database connection details, and all have default values, so you don’t have to enter any parameters for your default installation.

3. Deploy this WordPress template by adding your template to the project. Run this command in the AWS Cloud9 bash window:
4. Deploy your new template with the **oc new-app** command:

   ```bash
   oc new-app --template wordpress
   ```

5. View all the newly created resources:

   ```bash
   oc get all
   ```

6. Confirm the state of the application rollout for both MariaDB and WordPress:

   ```bash
   oc rollout status -w dc/mariadb
   oc rollout status -w dc/wordpress
   ```

 You should see something like this:

   ```text
   replication controller "mariadb-1" successfully rolled out
   replication controller "wordpress-1" successfully rolled out
   ```

7. Let’s take a look at the MariaDB logs to verify that it’s running as expected:

   ```bash
   oc logs dc/mariadb
   ```

 Expected output:

   ```text
   mysqld_safe Starting mysqld daemon with databases from /var/lib/mysql
   ```

8. Let’s also look at the WordPress logs to verify that it’s running as expected:

   ```bash
   oc logs dc/wordpress
   ```

 Expected output:

   ```text
   /usr/sbin/httpd -D FOREGROUND
   ```

9. To see how the WordPress application is connecting to the database, run:

   ```bash
   oc status
   ```

10. To identify the route that has been created for external access, run:
oc get routes

The output will provide details about the WordPress application, including the hostname.

11. Enter the hostname from the HOST/PORT section of the output into a web browser. The WordPress installation screen is displayed.

12. Enter all the required details, make a note of the generated password, and then choose Install WordPress.

13. Log in to WordPress. Select the “Back to WordPress demo” link under “lost your password?”

WordPress is now running in your OpenShift cluster. At the moment it’s using a containerized MariaDB database that you deployed with a YAML template. Managing databases can be difficult, and requires handling of backups, scaling, and security patching. You can fix that by switching to a managed database service that will handle your database administration tasks. In the next section, you’ll use AWS Service Broker to switch to a MariaDB database that’s running on Amazon RDS.

Update WordPress to use Amazon RDS

1. Open your web browser to the OpenShift web console that you logged in to in step 3 of the Access Red Hat OpenShift section of this guide.

2. Choose Amazon RDS for MariaDB from the catalog, and then choose Next.

3. For Plan, choose Development, and then choose Next. This will give you a best-practice Amazon RDS instance configured for development.

4. In the Amazon RDS for MariaDB configuration screen, fill in two values:
 - For Access CIDR, enter 10.0.0.0/16 to grant the WordPress application access to the database.
 - For DB Instance Class, select db.t2.small.
5. Choose **Next**, choose **Create** in the **Binding** screen, and then choose **Close**.

6. You should now see “Amazon RDS for MariaDB is being provisioned in my-wordpress-project.” Choose **Continue to the project overview**.

In the screen illustrated in Figure 4, you will see your WordPress application. The Amazon RDS instance will be in a “Pending” state and will take around 20 minutes to deploy. AWS Service Broker uses AWS CloudFormation to provision resources into your account. To view what is happening under the hood in more detail, you can navigate to the [AWS CloudFormation console](https://console.aws.amazon.com/cloudformation/home) and view the stack events for the stack whose name starts with `aws-service-broker-rds mariadb-`.
7. When Amazon RDS for MariaDB has been provisioned, the “Pending” status will disappear. At this point, you can create a binding to the database. Choose **Create Binding**, **Bind**, and then **Close**.

8. Choose the binding that was created, and then choose **View Secret** to see the credential keys that were returned by AWS Service Broker.

9. Choose **Add to Application**.

10. From the application drop-down, choose **wordpress**, and then choose **Save**.

 OpenShift will detect changes to the application pods (containers) and will restart the pods. The credentials for Amazon RDS will be available to WordPress as environment variables. However, the credentials that you created when you deployed the demo will override these variables.

11. In the OpenShift web console, choose **Overview**.

12. Choose the **wordpress** deployment configuration.

13. Choose the **Environment** tab.
14. Choose the X next to each **Container wordpress** environment variable (**DB_NAME**, **MASTER_PASSWORD**, and **MASTER_USERNAME**) to remove them, leaving behind only **Config Map/Secret**.

15. Choose **Save**.

![Figure 5: Overriding credentials for Amazon RDS](image)

16. Choose **Overview** and wait for the WordPress deployment to complete. It will show a blue circle around a number 1 when done.

17. Now you can delete the MariaDB deployment, as WordPress is now using Amazon RDS. Choose the **mariadb** deployment configuration.

18. From **Actions**, choose **Delete**, and then confirm the deletion.
Figure 6: Deleting the MariaDB deployment

19. Choose **Overview**, and then choose the link next to the WordPress application to open the WordPress site.

This will take you back to the installation screen, because we didn’t migrate data from the MariaDB database to Amazon RDS. In a production environment, you can use AWS Database Migration Service to migrate your data before deleting the original database.

In this section we’ve demonstrated how you can take advantage of AWS services from within OpenShift by using AWS Service Broker. We explained how to use the OpenShift web console to complete these steps. You can also declare AWS services in AWS CloudFormation templates and deploy them by using the **oc** CLI, as we did in the **Deploy WordPress** section of this walkthrough, or use CI/CD pipelines.

Delete the demo

The demo provisions a collection of AWS resources in your AWS account. When you complete your pilot or PoC, you can delete these resources by deleting the demo stack.

To delete the demo

1. Delete the RDS DB instance:
 a. In the OpenShift web console, choose **Overview**, and then choose **Amazon RDS for MariaDB**.
 b. From **Bindings**, choose **Delete**.
 c. From **Actions**, choose **Delete**.

 You will see a list of the stacks that are currently running in your account.

3. Select the stack named **Red-Hat-OpenShift-Demo**.

4. From **Actions**, choose **Delete stack**.

5. When prompted, choose **Delete**.

6. Delete the Red Hat subscriptions used by the demo:
 a. Open the Red Hat Customer Portal at https://access.redhat.com.
 b. Choose **Systems**.
 c. Select the eight Amazon EC2 systems that were created by the demo.
 d. Choose **Remove**, and then confirm the deletion.

Next steps

To dig deeper into Red Hat OpenShift, you can deploy a best-practice, production-ready cluster by using the **OpenShift on AWS Quick Start**. The Quick Start provides options for custom domain names, additional persistent storage options like GlusterFS, and much more.

Red Hat and AWS also offer an in-person, half-day workshop and hands-on lab so you can learn how to simplify application development by using Red Hat OpenShift Container Platform on AWS. To check the schedule and sign up, see the [workshop roadshow](#) website.

FAQ

Q. The CloudFormation stack fails to launch and rolls back.

A. There are many possible causes for this. The most common are issues with Red Hat subscriptions, incorrect credentials, incorrect pool ID, or insufficient available subscriptions. This demo requires eight OpenShift subscriptions or a **trial license** for deployment to complete. Other causes are insufficient IAM permissions or service limits. To troubleshoot, review the **Events** tab under the failed CloudFormation stacks, check your subscriptions, credentials, and service limits, and deploy again.

Q. I can't access the OpenShift web interface.

A. By default, this demo restricts access to the web interface to the IP that launched the demo. If your IP changes, or if your corporate network uses multiple addresses, you should
manually set the **Allowed external access CIDR** parameter to the appropriate CIDR for your network.

Additional resources

- [AWS Cloud9 IDE tutorial](#)
- [AWS Quick Starts](#)
- [AWS Service Broker](#)
- [Get PoC credits for OpenShift on AWS](#)
- [OpenShift documentation](#)
- [OpenShift on AWS workshop schedule](#)

Document revisions

<table>
<thead>
<tr>
<th>Date</th>
<th>Change</th>
<th>In sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 2019</td>
<td>Initial publication</td>
<td>—</td>
</tr>
</tbody>
</table>